首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The purpose of this study was to compare the role of frequency selectivity in measures of auditory and vibrotactile temporal resolution. In the first experiment, temporal modulation transfer functions for a sinusoidally amplitude modulated (SAM) 250-Hz carrier revealed auditory modulation thresholds significantly lower than corresponding vibrotactile modulation thresholds at SAM frequencies greater than or equal to 100 Hz. In the second experiment, auditory and vibrotactile gap detection thresholds were measured by presenting silent gaps bounded by markers of the same or different frequency. The marker frequency F1 = 250 Hz preceded the silent gap and marker frequencies after the silent gap included F2 = 250, 255, 263, 310, and 325 Hz. Auditory gap detection thresholds were lower than corresponding vibrotactile thresholds for F2 markers less than or equal to 263 Hz, but were greater than the corresponding vibrotactile gap detection thresholds for F2 markers greater than or equal to 310 Hz. When the auditory gap detection thresholds were transformed into filter attenuation values, the results were modeled well by a constant-percentage (10%) bandwidth filter centered on F1. The vibrotactile gap detection thresholds, however, were independent of marker frequency separation. In a third experiment, auditory and vibrotactile rate difference limens (RDLs) were measured for a 250-Hz carrier at SAM rates less than or equal to 100 Hz. Auditory RDLs were lower than corresponding vibrotactile RDLs for standard rates greater than 10 Hz. Combination tones may have confounded auditory performance for standard rates of 80 and 100 Hz. The results from these experiments revealed that frequency selectivity influences auditory measures of temporal resolution, but there was no evidence of frequency selectivity affecting vibrotactile temporal resolution.  相似文献   

2.
A spectral discrimination task was used to estimate the frequency range over which information about the temporal envelope is consolidated. The standard consisted of n equal intensity, random phase sinusoids, symmetrically placed around a signal component. The signal was an intensity increment of the central sinusoid, which on average was 1000 Hz. Pitch cues were degraded by randomly selecting the center frequency of the complex and single channel energy cues were degraded with a roving-level procedure. Stimulus bandwidth was controlled by varying the number of tones and the frequency separation between tones. For a fixed frequency separation, thresholds increased as n increased until a certain bandwidth was reached, beyond which thresholds decreased. This discontinuity in threshold functions suggests that different auditory processes predominate at different bandwidths, presumably an envelope analysis at bandwidths less than the breakpoint and across channel level comparisons for wider stimulus bandwidths. Estimates of the "transition bandwidth" for 46 listeners ranged from 100 to 1250 Hz. The results are consistent with a peripheral filtering system having multiple filterbanks.  相似文献   

3.
This study examined within- and across-electrode-channel processing of temporal gaps in successful users of MED-EL COMBI 40+ cochlear implants. The first experiment tested across-ear gap duration discrimination (GDD) in four listeners with bilateral implants. The results demonstrated that across-ear GDD thresholds are elevated relative to monaural, within-electrode-channel thresholds; the size of the threshold shift was approximately the same as for monaural, across-electrode-channel configurations. Experiment 1 also demonstrated a decline in GDD performance for channel-asymmetric markers. The second experiment tested the effect of envelope fluctuation on gap detection (GD) for monaural markers carried on a single electrode channel. Results from five cochlear implant listeners indicated that envelopes associated with 50-Hz wide bands of noise resulted in poorer GD thresholds than envelopes associated with 300-Hz wide bands of noise. In both cases GD thresholds improved when envelope fluctuations were compressed by an exponent of 0.2. The results of both experiments parallel those found for acoustic hearing, therefore suggesting that temporal processing of gaps is largely limited by factors central to the cochlea.  相似文献   

4.
Thresholds for the detection of temporal gaps were measured using two types of signals to mark the gaps: bandpass-filtered noises and sinusoids. The first experiment used seven subjects with relatively flat unilateral moderate cochlear hearing loss. The normal ear of each subject was tested both at the same sound-pressure level (SPL) as the impaired ear, and at the same sensation level (SL). Background noise was used to mask spectral "splatter" associated with the gap. For the noise markers, gap thresholds tended to be larger for the impaired ears than for the normal ears when the comparison was made at equal SPL; the difference was reduced, but not eliminated, when the comparison was made at equal SL. Gap thresholds for both the normal and impaired ears decreased as the center frequency increased from 0.5 to 2.0 kHz. For the sinusoidal markers, gap thresholds were often similar for the normal and impaired ears when tested at equal SPL, and were larger for the normal ears when tested at equal SL. Gap thresholds did not change systematically with frequency. Gap thresholds using sinusoidal markers were smaller than those using noise markers. In the second experiment, three subjects with single-channel cochlear implants were tested. Gap thresholds for noise bands tended to increase with increasing center frequency when the noise bandwidth was fixed, and to decrease with increasing bandwidth when the center frequency was fixed. Gap thresholds for sinusoids did not change with center frequency, but decreased markedly with increasing level. Gap thresholds for sinusoids were considerably smaller than those for noise bands.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The ability to segregate two spectrally and temporally overlapping signals based on differences in temporal envelope structure and binaural cues was investigated. Signals were a harmonic tone complex (HTC) with 20 Hz fundamental frequency and a bandpass noise (BPN). Both signals had interaural differences of the same absolute value, but with opposite signs to establish lateralization to different sides of the medial plane, such that their combination yielded two different spatial configurations. As an indication for segregation ability, threshold interaural time and level differences were measured for discrimination between these spatial configurations. Discrimination based on interaural level differences was good, although absolute thresholds depended on signal bandwidth and center frequency. Discrimination based on interaural time differences required the signals' temporal envelope structures to be sufficiently different. Long-term interaural cross-correlation patterns or long-term averaged patterns after equalization-cancellation of the combined signals did not provide information for the discrimination. The binaural system must, therefore, have been capable of processing changes in interaural time differences within the period of the harmonic tone complex, suggesting that monaural information from the temporal envelopes influences the use of binaural information in the perceptual organization of signal components.  相似文献   

6.
Gap detection thresholds for speech and analogous nonspeech stimuli were determined in younger and older adults with clinically normal hearing in the speech range. Gap detection thresholds were larger for older than for younger listeners in all conditions, with the size of the age difference increasing with stimulus complexity. For both ages, gap detection thresholds were far smaller when the markers before and after the gap were the same (spectrally symmetrical) compared to when they were different (spectrally asymmetrical) for both speech and nonspeech stimuli. Moreover, gap detection thresholds were smaller for nonspeech than for speech stimuli when the markers were spectrally symmetrical but the opposite was observed when the markers were spectrally asymmetrical. This pattern of results may reflect the benefit of activating well-learned gap-dependent phonemic contrasts. The stimulus-dependent age effects were interpreted as reflecting the differential effects of age-dependent losses in temporal processing ability on within- and between-channel gap detection.  相似文献   

7.
Temporal gaps in noise and sinusoids   总被引:3,自引:0,他引:3  
The ability of human observers to detect partially filled or completely silent intervals (gaps) was measured using a variety of different waveforms. The slopes of the psychometric functions for gap detection using broadband noise are dependent upon the amount of noise remaining during the gap. For completely silent intervals, the psychometric function covers a range of only 2 ms, but the psychometric functions for partially filled intervals are less steep. The detection of gaps in narrow-band noise (surrounded by complementary band-reject maskers) is strongly influenced by the signal-to-noise ratio. The signal bandwidth and center frequency also influence detectability. Gap detection improved as signal bandwidth increased, and detection improved when signal bands containing gaps were centered at higher frequencies. Detection of gaps in single components of a 21-component, equal-amplitude complex also showed lower thresholds as the frequency of the component containing the gap increased. Increasing the number of components in the complex that contained the gap improved the detectability of the gap, more so when the gaps were all presented at the same time (synchronous condition). Uncertainty about the temporal position of the gap within the observation interval made the gap more difficult to detect. This temporal uncertainty effect occurred for gaps in broadband noise, in narrow-band noise, and in sinusoidal waveforms.  相似文献   

8.
The ability of listeners to detect a temporal gap in a 1600-Hz-wide noiseband (target) was studied as a function of the absence and presence of concurrent stimulation by a second 1600-Hz-wide noiseband (distractor) with a nonoverlapping spectrum. Gap detection thresholds for single noisebands centered on 1.0, 2.0, 4.0, and 5.0 kHz were in the range from 4 to 6 ms, and were comparable to those described in previous studies. Gap thresholds for the same target noisebands were only modestly improved by the presence of a synchronously gated gap in a second frequency band. Gap thresholds were unaffected by the presence of a continuous distractor that was either proximate or remote from the target frequency band. Gap thresholds for the target noiseband were elevated if the distractor noiseband also contained a gap which "roved" in time in temporal proximity to the target gap. This effect was most marked in inexperienced listeners. Between-channel gap thresholds, obtained using leading and trailing markers that differed in frequency, were high in all listeners, again consistent with previous findings. The data are discussed in terms of the levels of the auditory perceptual processing stream at which the listener can voluntarily access auditory events in distinct frequency channels.  相似文献   

9.
Thresholds were measured for the detection of a temporal gap in a bandlimited noise signal presented in a continuous wideband masker, using an adaptive forced-choice procedure. In experiment I the ratio of signal spectrum level to masker spectrum level (the SMR) was fixed at 10 dB and gap thresholds were measured as a function of signal bandwidth at three center frequencies: 0.4, 1.0, and 6.5 kHz. Performance improved with increasing bandwidth and increasing center frequency. For a subset of conditions, gap threshold was also measured as bandwidth was varied keeping the upper cutoff frequency of the signal constant. In this case the variation of gap threshold with bandwidth was more gradual, suggesting that subjects detect the gap using primarily the highest frequency region available in the signal. At low center frequencies, however, subjects may have a limited ability to combine information in different frequency regions. In experiment II gap thresholds were measured as a function of SMR for several signal bandwidths at each of three center frequencies: 0.5, 1.0, and 6.5 kHz. Gap thresholds improved with increasing SMR, but the improvement was minimal for SMRs greater than 12-15 dB. The results are used to evaluate the relative importance of factors influencing gap threshold.  相似文献   

10.
Gap detection thresholds were measured by forced-choice procedure for conditions where the duration of a silent gap was varied adaptively between pairs of sinusoidal markers of the same or different frequency. Frequencies of the first sinusoid in a pair of markers ranged from F1 = 500 to 4000 Hz. Second-sinusoid marker frequencies F2 included F1 = F2, and usually frequencies 2%, 5%, 24%, and 50% higher than F1. In preliminary studies the role of presentation level (E/N0) on gap detection was considered. Preliminary data revealed confounding extraneous factors arising from gating transients and from overall stimulus (i.e., markers + gap) and/or masker duration cues. In the main experiments, the contributions of these extraneous cues were evaluated with experimental designs aimed at identifying and minimizing the confounding roles of these cues in gap detection. For conditions where extraneous gating transient cues were minimized (by presenting the sinusoidal markers in a continuous noise masker with random onset phase for the second sinusoid in every pair of markers) and overall stimulus duration cues were diminished (by randomizing the duration of each marker independently), gap detection thresholds increased from 5 to 90 ms as the frequency separation between F1 and F2 was increased by half an octave. When the gap detection thresholds were treated as filter attenuation values by normalizing and converting the data into decibels, the data were closely fit by the roex filter model. On average, the listeners' performances were modeled well by a constant-percentage (7%) bandwidth filter centered on F1.  相似文献   

11.
This study investigated the effect on gap detection of perceptual channels, hypothesized to be tuned to spatial location or fundamental frequency (f0). Thresholds were measured for the detection of a silent temporal gap between two markers. In the first experiment, the markers were broadband noise, presented either binaurally or monaurally. In the binaural conditions, the markers were either diotic, or had a 640-micros interaural time difference (ITD) or a 12-dB interaural level difference (ILD). Reversing the ITD across the two markers had no effect on gap detection relative to the diotic condition. Reversing the ILD across the two markers produced a marked deterioration in performance. However, the same deterioration was observed in the monaural conditions when a 12-dB level difference was introduced between the two markers. The results provide no evidence for the role of spatially tuned neural channels in gap detection. In the second experiment, the markers were harmonic tone complexes, filtered to contain only high, unresolved harmonics. Using complexes with a fixed spectral envelope, where the f0 (of 140 or 350 Hz) was different for the two markers, produced a deterioration in performance, relative to conditions where the f0 remained the same. A larger deterioration was observed when the two markers occupied different spectral regions but had the same f0. This supports the idea that peripheral coding is dominant in determining gap-detection thresholds when the two markers differ along any physical dimension. Higher-order neural coding mechanisms of f0 and spatial location seem to play a smaller role and no role, respectively.  相似文献   

12.
Modulation gap detection (MGD) is a procedure that measures the sensitivity to an interruption in the modulation pattern imposed upon one or more carrier frequencies. The MGD task was developed to test conditions where a temporal event traverses frequency, but without a concomitant interruption in the spectral continuity of the stimulus. This contrasts with across-frequency gap detection where there is an inherent spectral discontinuity associated with the temporal gap, and where there is a marked decline in performance when the markers of the temporal gap are widely separated in frequency. The purpose of this study was to test the hypothesis that a wideband temporal analysis will be facilitated if there exists a spectral continuity throughout the temporal event. Experiment 1 established the procedure of MGD and indicated that a modulation rate of 8 Hz was optimal for the task. Experiment 2 showed that performance declined markedly when the carrier frequencies of the modulation markers were widely separated in frequency. This finding indicates that spectral continuity across the temporal event is not a sufficient prerequisite for the auditory system to undertake a wideband temporal analysis. Experiment 3 revealed that dichotic MGD also results in poor performance, similar to that seen for widely separated carrier frequencies in the monaural case. This supports the hypothesis that the "channels" across which temporal events are poorly processed do not necessarily correspond to peripheral frequency channels.  相似文献   

13.
Results of experiments on the detection of silent intervals, or gaps, in broadband noise are reported for normal-hearing listeners. In some preliminary experiments, a gap threshold of about 2 ms was measured. This value was independent of the duration of the noise burst, variation of the noise level on each presentation, or the temporal position of the gap within the noise burst. In the main experiments, the thresholds for partial decrements in the noise waveform as well as brief increments were determined. As predicted by a model that assumes a single fixed peak-to-valley detection ratio, thresholds for increments are slightly higher than thresholds for decrements when the signal is measured as the change in rms noise level. A first-order model describes the temporal properties of the auditory system as a low-pass filter with a 7- to 8-ms time constant. Temporal modulation transfer functions were determined for the same subjects, and the estimated temporal parameters agreed well with those estimated from the gap detection data. More detailed modeling was carried out by simulating Viemeister's three-stage temporal model. Simulations, using an initial stage bandwidth of 4000 Hz and a 3-ms time constant for the low-pass filter, generate data that are very similar to those obtained from human subjects in both modulation and gap detection.  相似文献   

14.
Temporal gap detection was measured as a function of absolute signal bandwidth at a low-, a mid-, and a high-frequency region in six listeners with normal hearing sensitivity. Gap detection threshold decreased monotonically with increasing stimulus bandwidth at each of the three frequency regions. Given conditions of equivalent absolute bandwidth, gap detection thresholds were not significantly different for upper cutoff frequencies ranging from 600 to 4400 Hz. A second experiment investigated gap detection thresholds at two pressure-spectrum levels, conditions typically resulting in substantially different estimates of frequency selectivity. Estimates of frequency selectivity were collected at the two levels using a notched-noise masker technique. The gap threshold-signal bandwidth functions were almost identical at pressure-spectrum levels of 70 dB and 40 dB for the two subjects in experiment II, while estimates of frequency selectivity showed poorer frequency selectivity at the 70-dB level than at 40 dB. Data from both experiments indicated that gap detection in bandlimited noise was inversely related to signal bandwidth and that gap detection did not vary significantly with changes in signal frequency over the range of 600 to 4400 Hz. Over the range of frequencies investigated, the results indicated no clear relation between gap detection for noise stimuli and peripheral auditory filtering.  相似文献   

15.
The first part of this paper presents several experiments on signal detection in temporally modulated noise, yielding a general approach toward the concept of comodulation masking release (CMR). Measurements were made on masked thresholds of both long- and short-duration, narrow-band signals presented in a 100% sinusoidally amplitude-modulated (SAM) noise masker (modulation frequency 32 Hz), as a function of masker bandwidth from 1/3 oct up to 13/3 octs, while the masker band was geometrically centered at signal frequency. With the short-duration signals placed in the valley of the masker, a substantial CMR (i.e., a decrease of masked threshold with increasing masker bandwidth) was found, whereas for the long-duration signals CMR was smaller. Furthermore, investigations were carried out to determine whether CMR changes when the bandwidth of the signals, consisting of bandpass impulse responses, is increased. The data indicate that substantial CMR remains even when all masker bands contain a signal component, thus minimizing across-channel differences. This finding is not in line with current models accounting for the CMR phenomenon. The second part of this paper concerns signal detection in spectrally shaped noise. Also investigated was whether release from masking occurs for the detection of a pure-tone signal at a valley or a peak of a simultaneously presented masking noise with a sinusoidally rippled power spectrum, when this masker was preceded and followed by a second noise (temporal flanking burst) with an identical spectral shape as the on-signal noise. Similar to CMR effects for temporal modulations, the data indicate that coshaping masking release (CSMR) occurs when the signal is placed in a valley of the spectral envelope of the masker, whereas no release from masking is found when the signal is placed at a peak of the spectral envelope of the masker. The implications of these experiments for measures of spectral and temporal resolution are discussed.  相似文献   

16.
Pure tone gap stimuli with identical (within-channel) or dissimilar (between-channel) marker frequencies of 1 and 2 kHz were presented to young and old listeners in a two-interval forced choice gap detection task. To estimate the influence of extraneous duration cues on gap detection, thresholds in the between-channel conditions were obtained for two different sets of reference stimuli: reference stimuli that were matched to the overall duration of the gap stimulus, i.e., two markers plus the gap, and reference stimuli that were fixed at the combined duration of the two markers excluding the gap. Results from within-channel conditions were consistent with previous studies, i.e., there were small but highly reliable age differences, smaller gap thresholds at longer marker durations, and an interaction between the two variables. In between-channel conditions, however, age differences were not as clear cut. Rather, the effect of age varied as a function of duration cue and was more pronounced when stimuli were matched for overall duration than when the duration of the reference tone was fixed.  相似文献   

17.
In a previous paper, it was shown that sequential stream segregation could be based on both spectral information and periodicity information, if listeners were encouraged to hear segregation [Vliegen and Oxenham, J. Acoust. Soc. Am. 105, 339-346 (1999)]. The present paper investigates whether segregation based on periodicity information alone also occurs when the task requires integration. This addresses the question: Is segregation based on periodicity automatic and obligatory? A temporal discrimination task was used, as there is evidence that it is difficult to compare the timing of auditory events that are perceived as being in different perceptual streams. An ABA ABA ABA... sequence was used, in which tone B could be either exactly at the temporal midpoint between two successive tones A or slightly delayed. The tones A and B were of three types: (1) both pure tones; (2) both complex tones filtered through a fixed passband so as to contain only harmonics higher than the 10th, thereby eliminating detectable spectral differences, where only the fundamental frequency (f0) was varied between tones A and B; and (3) both complex tones with the same f0, but where the center frequency of the spectral passband varied between tones. Tone A had a fixed frequency of 300 Hz (when A and B were pure tones) or a fundamental frequency (f0) of 100 Hz (when A and B were complex tones). Five different intervals, ranging from 1 to 18 semitones, were used. The results for all three conditions showed that shift thresholds increased with increasing interval between tones A and B, but the effect was largest for the conditions where A and B differed in spectrum (i.e., the pure-tone and the variable-center-frequency conditions). The results suggest that spectral information is dominant in inducing (involuntary) segregation, but periodicity information can also play a role.  相似文献   

18.
Detection thresholds for gaps and overlaps, that is acoustic and perceived silences and stretches of overlapping speech in speaker changes, were determined. Subliminal gaps and overlaps were categorized as no-gap-no-overlaps. The established gap and overlap detection thresholds both corresponded to the duration of a long vowel, or about 120 ms. These detection thresholds are valuable for mapping the perceptual speaker change categories gaps, overlaps, and no-gap-no-overlaps into the acoustic domain. Furthermore, the detection thresholds allow generation and understanding of gaps, overlaps, and no-gap-no-overlaps in human-like spoken dialogue systems.  相似文献   

19.
Relations between perception of suprathreshold speech and auditory functions were examined in 24 hearing-impaired listeners and 12 normal-hearing listeners. The speech intelligibility index (SII) was used to account for audibility. The auditory functions included detection efficiency, temporal and spectral resolution, temporal and spectral integration, and discrimination of intensity, frequency, rhythm, and spectro-temporal shape. All auditory functions were measured at 1 kHz. Speech intelligibility was assessed with the speech-reception threshold (SRT) in quiet and in noise, and with the speech-reception bandwidth threshold (SRBT), previously developed for investigating speech perception in a limited frequency region around 1 kHz. The results showed that the elevated SRT in quiet could be explained on the basis of audibility. Audibility could only partly account for the elevated SRT values in noise and the deviant SRBT values, suggesting that suprathreshold deficits affected intelligibility in these conditions. SII predictions for the SRBT improved significantly by including the individually measured upward spread of masking in the SII model. Reduced spectral resolution, reduced temporal resolution, and reduced frequency discrimination appeared to be related to speech perception deficits. Loss of peripheral compression appeared to have the smallest effect on the intelligibility of suprathreshold speech.  相似文献   

20.
The present study investigates the nature of spectral envelope perception using a spectral modulation detection task in which sinusoidal spectral modulation is superimposed upon a noise carrier. The principal goal of this study is to characterize spectral envelope perception in terms of the influence of modulation frequency (cycles/octave), carrier bandwidth (octaves), and carrier frequency region (defined by lower and upper cutoff frequencies in Hz). Spectral modulation detection thresholds measured as a function of spectral modulation frequency result in a spectral modulation transfer function (SMTF). The general form of the SMTF is bandpass in nature, with a minimum modulation detection threshold in the region between 2 to 4 cycles/octave. SMTFs are not strongly dependent on carrier bandwidth (ranging from 1 to 6 octaves) or carrier frequency region (ranging from 200 to 12 800 Hz), with the exception of carrier bands restricted to very low audio frequencies (e.g., 200-400 Hz). Spectral modulation detection thresholds do not depend on the presence of random level variations or random modulation phase across intervals. The SMTFs reported here and associated excitation pattern computations are considered in terms of a linear systems approach to spectral envelope perception and potential underlying mechanisms for the perception of spectral features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号