首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asparagine-linked oligosaccharides (N-glycans) usually show structural heterogeneity, especially in proteins with sialylated N-glycans and, therefore, their structural analysis is still very difficult. A zwitterionic type of hydrophilic interaction chromatography column with sulfobetaine functional groups (called a ZIC-HILIC column) was applied to the separation of tryptic peptides of alpha-1-acid glycoprotein. It was demonstrated that the ZIC-HILIC separation column has a selectivity for sialylated N-glycopeptides and a high capability for separation based on the structural recognition of sialylated N-glycan isomers as well as for the previously reported neutral N-glycans and N-glycopeptides. The retention characteristics of neutral and sialylated N-glycans derivatized with 2-aminopyridine (PA N-glycans) demonstrate that the retentions of the N-glycans are based primarily on hydrophilic interaction with the water-rich liquid layer generated on the surface of the ZIC-HILIC column. In addition, the electrostatic repulsion interaction shielded with counter ions effectively tunes the separation and recognition of sialylated N-glycan isomers.  相似文献   

2.
Mass spectrometric analyses of various N-glycans binding to proteins and peptides are highly desirable for elucidating their biological roles. An approach based on collision-induced dissociation (CID) MS(n) spectra acquired by electrospray ionization linear ion trap time-of-flight mass spectrometry (ESI-LIT-TOFMS) in the positive- and negative-ion modes has been proposed as a direct method of assigning N-glycans without releasing them from N-glycopeptides. In the positive-ion mode of this approach, the MS(2) spectrum of N-glycopeptide was acquired so that a glycoside-bond cleavage occurs in the chitobiose residue (i.e., GlcNAcbeta1-4GlcNAc, GlcNAc: N-acetylglucosamine) attached to asparagine (N), and two charges on the [M+H+Na](2+) precursor ion are shared with both of the resulting fragments. These fragments are sodiated B(n)-type fragment ions of oligosaccharide (N-glycan) and a protonated peptide ion retaining one GlcNAc residue on the asparagine (N) residue. The structure of N-glycan was assigned by comparing MS(3) spectra derived from both the sodiated B(n)-type fragment ions of N-glycopeptide and the PA (2-aminopyridine) N-glycan standard (i.e., MS(n) spectral matching). In a similar manner, the structural assignment of sialylated N-glycan was performed by employing the negative-ion CID MS(n) spectra of deprotonated B(n)-type fragment ions of N-glycopeptide and the PA N-glycan standard. The efficacy of this approach was tested with chicken egg yolk glycopeptides with a neutral and a sialylated N-glycan, and human serum IgG glycopeptides with neutral N-glycan isomers. These results suggest that the approach based on MS(n) spectral matching is useful for the direct and simple structural assignment of neutral and sialylated N-glycans of glycopeptides.  相似文献   

3.
Arai K  Mori M  Hironaga T  Itabashi H  Tanaka K 《色谱》2012,30(4):404-408
A combination of hydrophilic interaction chromatographic(HILIC) column and a weakly acidic cation-exchange resin(WCX) column was used for simultaneous separation of inorganic anions and cations by ion chromatography(IC).Firstly,the capability of HILIC column for the separation of analyte ions was evaluated under acidic eluent conditions.The columns used were SeQuant ZIC-HILIC(ZIC-HILIC) with a sulfobetaine-zwitterion stationary phase(ZIC-HILIC) and Acclaim HILIC-10 with a diol stationary phase(HILIC-10).When using tartaric acid as the eluent,the HILIC columns indicated strong retentions for anions,based on ion-pair interaction.Especially,HILIC-10 could strongly retain anions compared with ZIC-HILIC.The selectivity for analyte anions of HILIC-10 with 5 mmol/L tartaric acid eluent was in the order of I-> NO-3 > Br-> Cl-> H2PO-4.However,since HILIC-10 could not separate analyte cations,a WCX column(TSKgel Super IC-A/C) was connected after the HILIC column in series.The combination column system of HILIC and WCX columns could successfully separate ten ions(Na+,NH+4,K+,Mg2+,Ca2+,H2PO-4,Cl-,Br-,NO-3 and I-) with elution of 4 mmol/L tartaric acid plus 8 mmol/L 18-crown-6.The relative standard deviations(RSDs) of analyte ions by the system were in the ranges of 0.02%-0.05% in retention times and 0.18%-5.3% in peak areas through three-time successive injections.The limits of detection at signal-to-noise ratio of 3 were 0.24-0.30 μmol/L for the cations and 0.31-1.2 μmol/L for the anions.This system was applied for the simultaneous determination of the cations and the anions in a vegetable juice sample with satisfactory results.  相似文献   

4.
Strongly polar phenolic acids are weakly retained and often poorly separated in reversed-phase (RP) liquid chromatography. We prepared zwitterionic polymethacrylate monolithic columns for micro-HPLC by in situ co-polymerization in fused-silica capillaries. The capillary monolithic columns prepared under optimized polymerization conditions show some similarities with the conventional particulate commercial ZIC-HILIC silica-based columns, however have higher retention and better separation selectivity under reversed-phase conditions, so that they can be employed for dual-mode HILIC-RP separations of phenolic acids on a single column. The capillary polymethacrylate monolithic sulfobetaine columns show excellent thermal stability and improved performance at temperatures 60–80 °C. The effects of the operation conditions on separation were investigated, including the type and the concentration of the organic solvent in the aqueous-organic mobile phase (acetonitrile and methanol), the ionic strength of the acetate buffer and temperature. While the retention in the RP mode decreases at higher temperatures in mobile phases with relatively low concentrations of acetonitrile, it is almost independent of temperature at HILIC conditions in highly organic mobile phases. The best separation efficiency can be achieved using relatively high acetate buffer ionic strength (20–30 mmol L−1) and gradient elution with alternately increasing (HILIC mode) and decreasing (RP mode) concentration of aqueous buffer in aqueous acetonitrile. Applications of the monolithic sulfobetaine capillary columns in alternating HILIC-RP modes are demonstrated on the analysis of phenolic acids in a beer sample.  相似文献   

5.
A new packed column SFC method has been developed for the determination of phytanic acid in human blood serum. Because of the low viscosity and high diffusion coefficient of supercritical carbon dioxide, several columns can be connected in series, significantly improving separation. Series connection of columns which differ in their selectivity enables the adjustment of the total selectivity towards the individual separation problem (‘selectivity tuning’). In this instance it was possible, after transesterification into their ethyl esters, to separate all the fatty acids in human blood serum, including phytanic acid, by coupling three columns (silica, amino-propyl, and RP8) in series.  相似文献   

6.
Stationary phase materials with small pore diameters are often used for the separation of copolymers according to their chemical composition. The rationale for such a column selection is to minimize the influence of the molecular weight on the separation. In this paper, we describe a detailed study of the influence of the pore size on the retention and separation of poly(methylmethacrylate) (PMMA)-poly(butylmethacrylate) copolymers. We used normal-phase (NP) and reversed-phase (RP) columns with various pore diameters, as well as non-porous columns and a monolithic column. The pore size was found to affect the separation, especially for (co-)polymer molecules with characteristic diameters that roughly correspond to the exclusion limit of the column. Also possibilities to separate block copolymers according to block length are strictly investigated. The making of one block in a di-block (DB) copolymer "invisible" can only be fulfilled if the "invisible" block does not play any role in the separation.  相似文献   

7.
A mixed-mode chromatographic (MMC) sorbent was prepared by functionalizing the silica sorbent with a pentafluorophenyl (PFP) ligand. The resulting stationary phase provided a reversed-phase (RP) retention mode along with a relatively mild strong cation-exchange (SCX) retention interaction. While the mechanism of interaction is not entirely clear, it is believed that the silanols in the vicinity of the perfluorinated ligand act as strongly acidic sites. The 2.1 mm x 150 mm column packed with such sorbent was applied to the separation of peptides. Linear RP gradients in combination with salt steps were used for pseudo two-dimensional (2D) separation and fractionation of tryptic peptides. An alternative approach of using linear cation-exchange gradients combined with RP step gradients was also investigated. Besides the attractive forces, the ionic repulsion contributed to the retention mechanism. The analytes with strong negatively charged sites (phosphorylated peptides, sialylated glycopeptides) eluted in significantly different patterns than generic tryptic peptides. This retention mechanism was employed for the isolation of phosphopeptides or sialylated glycopeptides from non-functionalized peptide mixtures. The mixed-mode column was utilized in conjunction with a phosphopeptide enrichment solid phase extraction (SPE) device packed with metal oxide affinity chromatography (MOAC) sorbent. The combination of MOAC and mixed-mode chromatography (MMC) provided for an enhanced extraction selectivity of phosphopeptides and sialylated glycopeptides peptides from complex samples, such as yeast and human serum tryptic digests.  相似文献   

8.
Enantiomer separations by HPLC using the macrocyclic glycopeptides teicoplanin (Chirobiotic T), teicoplanin aglycon (Chirobiotic TAG), and ristocetin A (Chirobiotic R) chiral stationary phases (CSP) have been achieved on a unique series of potentially biologically active racemic analogues of dihydrofurocoumarin. The macrocyclic glycopeptides have proven to be very selective for this class of compound. All of the 28 chiral analogues examined afforded baseline separation on at least one of the macrocyclic glycopeptide CSP. The teicoplanin CSP showed the broadest enantioselectivity with 24 of the compounds baseline separated. The TAG and the R CSP produced 23 and 14 baseline separations respectively. All three mobile phase modes, i.e. normal phase (NP), reversed phase (RP), and new polar organic modes (PO), have been evaluated. The NP mode proved to be most effective for the separation of chiral dihydrofurocoumarins on all CSP tested. In the reversed phase (RP) mode, all three CSP separated a similar number of compounds. It was observed that the structural characteristics of the analytes and steric effects are very important factors leading to chiral recognition. Hydrogen bonding was found to play a secondary role in chiral discrimination in the normal phase and polar organic modes. Hydrophobic interactions are important for chiral separation in the reversed-phase mode. Chromatographic retention data does not provide information on the absolute configuration of these chiral dihydrofurocoumarin derivatives. However, when coupled with circular dichroism using the exciton coupling chirality method, the enantiomer elution order and the absolute configuration of some chiral dihydrofurocoumarins were successfully determined.  相似文献   

9.
Complex, multicomponent mixtures are difficult to separate in a single chromatographic run. Therefore, the possibility to separate twelve coumarins from Archangelica officinalis was studied by combining a HPLC and a TLC system. HPLC optimized by the use of DryLab for Windows software was performed on RP-18 column and TLC was performed on silica plates. Fractions from the RP column were evaporated, applied on silica plate and developed in non-aqueous solvent. Possibilities of complete separation of investigated coumarins were discussed in RP and NP systems. The result of their complete separation was presented by HPLC chromatograms, DryLab simulated chromatograms and a video scan of TLC plate.  相似文献   

10.
Many samples contain compounds with various numbers of two or more regular structural groups. Such "multidimensional" samples (according to the Giddings' notation) are best separated in orthogonal chromatographic systems with different selectivities for the individual repeat structural groups, described by separation factors. Correlations between the repeat group selectivities characterize the degree of orthogonality and suitability of chromatographic systems for two-dimensional (2D) separations of two-dimensional samples. The range of the structural units in that can be resolved in a given time can be predicted on the basis of a model describing the repeat group selectivity in the first- and second-dimension systems. Two-dimensional liquid chromatographic system combining reversed-phase (RP) mode in the first dimension and normal-phase (NP) mode in the second dimension were studied with respect to the possibilities of in-line fraction transfer between the two modes. Hydrophilic interaction liquid chromatography (HILIC) with an aminopropyl silica column (APS) is more resistant than classical non-aqueous NP systems against adsorbent desactivation with aqueous solvents transferred in the fractions from the first, RP dimension to the second dimension. Hence, HILIC is useful as a second-dimension separation system for comprehensive RP-NP LCxLC. A comprehensive 2D RP-NP HPLC method was developed for comprehensive 2D separation of ethylene oxide-propylene oxide (EO-PO) (co)oligomers. The first-dimension RP system employed a 120 min gradient of acetonitrile in water on a C18 microbore column at the flow-rate of 10 microL/min. In the second dimension, isocratic HILIC NP with ethanol-dichloromethane-water mobile phase on an aminopropyl silica column at 0.5 mL/min was used. Ten microliter fractions were transferred from the RP to the HILIC NP system at 1 min switching valve cycle frequency.  相似文献   

11.
Wang Y  Zeng Z  Guan N  Cheng J 《Electrophoresis》2001,22(11):2167-2172
A novel open-tubular capillary electrochromatography (OT-CEC) column coated with 2,6-dibutyl-beta-cyclodextrin (DB-beta-CD) was prepared using sol-gel technique. In the sol-gel approach, owing to the three-dimensional network of sol-gel and the strong chemical bond between the stationary phase and the surface of capillary columns, good chromatographic characteristics and unique selectivity in separating isomers were shown. We achieved high efficiencies of 5-14 x 10(4) plates/m for the isomeric nitrophenols using the sol-gel-derived DB-beta-CD columns. The migration time reproducibility of the separation of the isomeric nitrophenols was better than 2.2% over five runs and 4.5% from column to column. These sol-gel-coated DB-beta-CD columns have shown improved separations of isomeric aminophenols, isomeric dihydroxybenzenes and isomeric nitrophenols, in comparison with the sol-gel matrix capillary column. The influences of buffer pH and methanol solvent on separation were investigated. The chiral resolution of enantiomers such as ibuprofen and binaphthol was explored primarily.  相似文献   

12.
A commercial Chromolith C18 column and two new stationary phases with mixed ligands bonded on the Kromasil silica gel support, SG-MIX and SG-Chol, were characterized using simple tests based on the retention of non-polar, basic and acidic compounds. Polar and methylene selectivity tests in acetonitrile-water and methanol-water mobile phases revealed lower hydrophobicities of the SG-MIX and SG-Chol columns in comparison to the Chromolith column. The columns were further characterized using new test criteria - gradient oligomer capacity and isomeric selectivity and peak symmetry of naphthalene di-sulphonic acids in aqueous mobile phases. The cholesterolic column shows greater gradient oligomer selectivity for the separation of oligoethylene glycol samples than the SG-MIX and the Chromolith columns. Increased retention and peak tailing, but decreased isomeric selectivity for naphthalene-di-sulphonic acids was observed with the SG-MIX column, because of interactions with various polar bonded groups.  相似文献   

13.
Different RP-HPLC columns (phenyl, conventional ODS, cross-linked C(18) and special end-capped C(8) and C(18) phases) were used to investigate the separation of four basic ionizable isomers. Using ACN/20mM NH(4)OAc aq., a separation was observed exclusively on RP columns with higher silanol activity at unusual high ACN concentration, indicating cation-exchange as main retention mechanism. Using MeOH/20mM NH(4)OAc aq., another separation at low MeOH concentrations was observed on both, RP columns with higher as well as RP columns with lower silanol activity, which is mainly based on hydrophobic interactions. The isomers were also separated on a bare silica column at higher MeOH content using NH(4)OAc. Since cation-exchange governs this retention, the elution order was different compared to the RP phases. A strong retention on the silica column was observed in ACN, which could be attributed to partition processes as additional retention mechanism.  相似文献   

14.
A chiral stationary phase based on tert-butylcarbamoyl quinine has shown remarkable enantiomer separation capability for the thyroid hormone thyroxine (T(4)) and its structural analogue triiodothyronine (T(3)) employing hydroorganic buffered mobile phases (typical RP conditions). To overcome the problem of a somehow limited chemoselectivity for the critical peak pair between adjacent L-thyroxine (L-T(4)) and D-thyroxine (D-T(4)) peaks on the chiral anion-exchanger CSP when all four compounds need to be analysed simultaneously like in impurity profiling of L-T(4 )drug products, an RP column (Gemini C18) was serially coupled with the chiral anion-exchanger column to add a hydrophobic selectivity increment and to improve thereby the critical resolution between L-T(3) and D-T(4). Various parameters such as organic modifier content, pH, buffer concentration and type, type of achiral column as well as sequence of achiral and chiral column have been investigated with individual and tandem columns. With the optimized conditions and use of the tandem column a significantly improved separation, as compared to the chiral anion-exchanger column alone, with a critical resolution as high as 3.7 and an almost equal band spacing of the four components of the test mixture could be obtained. The sequence of the columns (achiral-chiral or chiral-achiral) had no significant effect on the separation performance.  相似文献   

15.
A neutral octadecyl monolithic (ODM) column for RP capillary electrochromatography (RP-CEC) has been developed. The ODM column was prepared by the in situ polymerization of octadecyl acrylate (ODA) as the monomer and trimethylolpropanetrimethacrylate (TRIM) as the crosslinker, in a ternary porogenic solvent containing cyclohexanol, ethylene glycol, and water. The ODM column exhibited cathodal EOF over a wide range of pH and ACN concentration in the mobile phase despite the fact that it was devoid of any fixed charges. It is believed that the EOF is due to the adsorption of ions from the mobile phase onto the surface of the monolith thus imparting to the neutral ODM column the zeta potential necessary to support the EOF required for mass transport across the monolithic column. Furthermore, the adsorption of mobile phase ions to the neutral monolith modulated solute retention and affected the separation selectivity. The wide applications of the neutral ODM column were demonstrated by its ability to separate a wide range of small and large solutes, both neutral and charged. While the separation of the neutral solutes was based on RP retention mechanism, the charged solutes were separated on the basis of their electrophoretic mobility and hydrophobic interaction with the C18 ligands of the stationary phase. As a typical result, the neutral monolithic column was able to separate peptides quite rapidly with a separation efficiency of nearly 200,000 plates/m, and this efficiency was exploited in tryptic peptide mapping of standard proteins, e. g., lysozyme and cytochrome C, by isocratic elution.  相似文献   

16.
We recently introduced a mixed-mode reversed-phase/weak anion-exchange type separation material based on silica particles which consisted of a hydrophobic alkyl strand with polar embedded groups (thioether and amide functionalities) and a terminal weak anion-exchange-type quinuclidine moiety. This stationary phase was designed to separate molecules by lipophilicity and charge differences and was mainly devised for peptide separations with hydroorganic reversed-phase type elution conditions. Herein, we demonstrate the extraordinary flexibility of this RP/WAX phase, in particular for peptide separations, by illustrating its applicability in various chromatographic modes. The column packed with this material can, depending on the solute character and employed elution conditions, exploit attractive or repulsive electrostatic interactions, and/or hydrophobic or hydrophilic interactions as retention and selectivity increments. As a consequence, the column can be operated in a reversed-phase mode (neutral compounds), anion-exchange mode (acidic compounds), ion-exclusion chromatography mode (cationic solutes), hydrophilic interaction chromatography mode (polar compounds), and hydrophobic interaction chromatography mode (e.g., hydrophobic peptides). Mixed-modes of these chromatographic retention principles may be materialized as well. This allows an exceptionally flexible adjustment of retention and selectivity by tuning experimental conditions. The distinct separation mechanisms will be outlined by selected examples of peptide separations in the different modes.  相似文献   

17.
In this study, the analysis of a peptide set, chosen for their differences in hydrophilicity, and the tryptic digests of bovine cytochrome c and β-lactoglobulin by hydrophilic interaction chromatography–electrospray ionisation mass spectrometry (HILIC–ESI-MS) is demonstrated. Two different types of HILIC phases, i.e., an amide- and an amino-modified silica-based phase, packed into narrow bore or capillary columns, were investigated with separations conducted under either low pH or neutral pH conditions. The separation performance of the two HILIC columns with respect to peak efficiency and selectivity have been documented under these different mobile phase conditions, and the results compared with the performance of a conventional capillary reversed-phase C18 column of similar dimensions. It was found that very good separation of the peptide set could be achieved by using the amide-modified silica column over a broad pH range. Moreover, with the protein digest samples, excellent separation of the tryptic digests was obtained with the amide-modified HILIC column under neutral pH conditions. Compared to the conventional reversed-phase C18 separations, the use of these HILIC columns not only provided complementary separation selectivity, but also offered the capability to identify unique peptides using tandem HILIC–mass spectrometric techniques. These studies therefore highlight the potential of HILIC procedures for future proteomic applications.  相似文献   

18.
Eleven cyanopropyl ("cyano") columns were characterized by means of a relationship developed originally for alkyl-silica columns. Compared to type-B alkyl-silica columns (i.e., made from pure silica), cyano columns are much less hydrophobic (smaller H), less sterically restricted (smaller S*), and have lower hydrogen-bond acidity (smaller A). Because sample retention is generally much weaker on cyano versus other columns (e.g., C8, C18), a change to a cyano column usually requires a significantly weaker mobile phase in order to maintain comparable values of k for both columns. For this reason, practical comparisons of selectivity between cyano and other columns (i.e., involving different mobile phases for each column) must take into account possible changes in separation due to the change in mobile phase, as well as change in the column.  相似文献   

19.
A set of particulate silica-supported mixed-mode RP/weak anion-exchangers (RP/WAX) (obtained by bonding of N-undecenoylated 3-aminoquinuclidine, 3-aminotropane and 2-dimethylaminoethylamine as well as of N-butenoyl-(2S,4S,5R)-2-aminomethyl-5-[(2-octylthio)ethyl]-quinuclidine to thiol-modified silica) were chromatographically characterized in comparison to selected commercially available columns using two distinct isocratic elution modes, viz. an aqueous-rich RP-type elution mode (with 40% ACN and 60% buffer) as well as an organic solvent-rich hydrophilic interaction chromatography (HILIC)-type elution mode (95 and 90% ACN). The mixed-mode RP/WAX phases showed multimodal applicability, unlike a polar embedded RP material (Synergi Fusion RP), amino phases (Luna NH(2), BioBasic AX) or typical HILIC packings (ZIC-HILIC, TSKGel Amide-80). Principal component analysis (PCA) of the RP test data confirmed that the in-house developed RP/WAX columns as well as the Acclaim Mixed-Mode WAX-1 phase resemble each other in their chromatographic characteristics having slightly lower hydrophobic selectivity (alpha(CH2) of 1.5) than the tested Synergi Fusion RP (alpha(CH2) approximately 1.8). In contrast, a decrease in mixed-mode character due to lowered ion-exchange capacity and concomitantly increased RP-like behavior could be identified for other mixed-mode phases in the order of Obelisc R > Primesep B2 > Uptisphere MM3. PCA on HILIC data revealed that the RP/WAX phases behave dissimilar to TSKGel Amide-80, ZIC-HILIC and polysulfoethyl A under the chosen elution conditions. Hence, they may be regarded as complementary to these commercial stationary phases with applicability profiles for hydrophilic but also hydrophobic solutes.  相似文献   

20.
High-performance liquid chromatography enantioseparation of vesamicol and six novel azaspirovesamicols (amino alcohols) was accomplished on different chiral stationary phases (CSPs) by using an optical rotation based chiral detector for identification of the resolved enantiomers. The Pirkle-type column Reprosil Chiral-NR was found to be most suitable for chiral resolution in normal phase (NP) mode; all compounds could be enantioseparated successfully. Also the cellulose-based column Reprosil Chiral-OM showed appropriate separation properties by using NP conditions. The amylose-type column Reprosil Chiral-AM-RP was most suitable for enantioseparation in reversed phase (RP) mode; five out of seven compounds were resolved. This CSP showed a considerably higher capability for chiral recognition of vesamicol derivatives in RP mode than the corresponding cellulose-based column Reprosil Chiral-OM-RP. Enantioseparation with the teicoplanin aglycone-based column Reprosil Chiral-AA was successful under polar ionic mobile phase conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号