首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reduction of sulfur content in gasoline and diesel fuel is a great environmental concern to reduce the motor vehicle emissions. Oxidative desulfurization using acetonitrile biphasic system has received much attention in recent years. The oxidative desulfurization can be oxidized the unreactive sulfur contents in the hydrodesulfurization and removed effectively. For the oxidative desulfurization process design and development, liquid–liquid equilibria (LLE) for acetonitrile biphasic systems are needed as fundamental information. In our previous work, LLE for acetonitrile + n-octane and + n-decane systems have been reported. In this work, therefore, LLE for acetonitrile + n-hexadecane system was measured. Furthermore, NRTL equation was applied to correlate the LLE for these three acetonitrile + n-alkane systems.  相似文献   

2.
Vapor–liquid equilibria (VLE) for the n-hexane + 2-isopropoxyethanol and n-heptane + 2-isopropoxyethanol (at 60, 80, and 100 kPa) systems were measured. Two systems present positive deviations from ideal behavior. And the system n-heptane + 2-isopropoxyethanol shows a minimum boiling azeotrope at all pressures. Experimented data have been correlated with the two term virial equation for vapor-phase fugacity coefficients and the three suffix Margules equation, Wilson, NRTL, and UNIQUAC equations for liquid-phase activity coefficients. Experimental VLE data show excellent agreements with models.  相似文献   

3.
Bubble point temperatures at 95.5 kPa, over the entire composition range, are measured for the binary mixtures formed by m-cresol with: methanol, ethanol, 1-propanol, 2-propanol, and n-, iso-, sec-, and tert-butanols - using a Swietoslawski-type ebulliometer. The liquid phase composition - bubble point temperature measurements are well represented by the Wilson model. (Vapor + liquid) equilibria predicted from the model are presented.  相似文献   

4.
The sufficient review of the existing literature of the 1-alkyl-1-methylppiperidinium-based ionic liquids has been presented. The phase diagrams for the binary systems of {1-butyl-1-methylpiperidinium thiocyanate [BMPIP][SCN] + an alcohol (1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, 1-decanol, 1-dodecanol), or + water, or + aliphatic hydrocarbons (n-hexane, n-heptane, n-octane), or + cyclohexane, or, + cycloheptane, or + aromatic hydrocarbons (benzene, toluene, ethylbenzene)} and for the binary systems of {1-ethyl-1-methylpiperidinium bis{(trifluoromethyl)sulfonyl}imide [EMPIP][NTf2] + an alcohol (ethanol, 1-propanol, 1-butanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol), or + water} have been determined at atmospheric pressure using a dynamic method. The influence of an alcohol chain length was discussed for these ionic liquids. A systematic decrease in the solubility was observed with an increase of the alkyl chain length of an alcohol. (Solid + liquid) phase equilibria with complete miscibility in the liquid phase region were observed for the systems involving water and the alcohols for the thiocyanate-based ionic liquid. Opposite, the bis{(trifluoromethyl)sulfonyl}imide-based ionic liquid reveal the immiscibility gap in the liquid phase. The correlation of the experimental data has been carried out using the NRTL equation. The phase diagrams reported here have been compared to the systems published earlier with the 1-alkyl-1-methylpiperidinium-based ionic liquids. The influence of the cation and anion on the phase behaviour has been discussed. The basic thermal properties of pure ILs, i.e. melting temperature and the enthalpy of fusion, the solid-solid phase transition temperature and enthalpy have been measured using a differential scanning microcalorimetry technique.  相似文献   

5.
Excess molar enthalpies, measured at 298.15 K in a flow microcalorimeter, are reported for the five binary systems formed by mixing n-octane with n-hexane, 2-methylpentane, 3-methylpentane, 2,2-dimethylbutane and 2,3-dimethylbutane. The results for equimolar mixtures, together with similar data for other n-alkane + hexane isomer mixtures, are correlated in terms of the acentric factors of the n-alkanes.  相似文献   

6.
Volumetric heat capacities were measured for binary mixtures of n-heptane with n-hexane, 2-methylpentane, 3-methylpentane, 2,2-dimethylbutane, and 2,3-dimethylbutane at 298.15 K in a Picker flow microcalorimeter. The results were combined with previously published excess molar volumes to obtain excess molar isobaric heat capacities. Use of the Flory theory of mixtures to interpret the latter is discussed.  相似文献   

7.
(Solid + liquid) phase diagrams, SLE have been determined for (octan-1-ol, or nonan-1-ol, or decan-1-ol, or undecan-1-ol + benzonitrile) and for (hexylamine, or octylamine, or decylamine, or 1,3-diaminopropane + benzonitrile) using a cryometric dynamic method at atmospheric pressure. Simple eutectic systems with complete immiscibility in the solid phase and complete miscibility on the liquid phase have been observed. The solubility decreases with an increase of the number of carbon atoms in the alkan-1-ol, or amine chain. The temperature of the eutectic points increases and shifts to lower alkan-1-ol, or amine mole fractions as the alkyl chain length of the alkan-1-ol, or amine increases. The higher intermolecular interaction was observed for the (alkan-1-ol + benzonitrile) systems.  相似文献   

8.
The vapour pressure of binary mixtures of hydrogen sulphide with ethane, propane, and n-butane was measured at T = 182.33 K covering most of the composition range. The excess Gibbs free energy of these mixtures has been derived from the measurements made. For the equimolar mixtures for (H2S + C2H6), (820.1 ± 2.4) J · mol−1 for (H2S + C3H8), and (818.6 ± 0.9) J · mol−1 for (H2S + n-C4H10). The binary mixtures of H2S with ethane and with propane exhibit azeotropes, but that with n-butane does not.  相似文献   

9.
Vapor–liquid equilibria (VLE) for the n-heptane + ethylene glycol monopropyl ether and n-octane + ethylene glycol monopropyl ether systems were measured. Isobaric VLE measurements of the associating fluid mixtures were conducted at several pressures (60 kPa, 80 kPa and 100 kPa) using Fischer VLE 602 equipment. The experimental data were correlated using a two-term virial equation for vapor-phase fugacity coefficients and the three suffix Margules equation, Wilson, NRTL, and UNIQUAC models for liquid-phase activity coefficients. The results show good agreement with the variety of models.  相似文献   

10.
It has been suggested recently that the alanes AlnHn + 2 can be treated by the polyhedral skeletal electron pair theory (PSEPT) of Wade and Mingos (W-M) as it was successful for their borane congeners such as BnHn + 2, well known as the deprotonated BnHn2−. To do so, the neutral AlnHn + 2 have been considered as AlnHn2− + 2H+. The additional hydrogens donate their electrons to the AlnHn polyhedral framework and according to the n + 1 electron pairs rule; these clusters should have closo-polyhedral structures. In this work the homologous gallanes, the structures and stabilities of GanHn + 2 are studied at high levels of calculational theory and we investigated the applicability of the W-M rule to the alanes and gallanes AnHn + 2 (n = 4-6; A = Al, Ga). It will be shown that the presence of bridging hydrogen atoms reduces the compactness of the corresponding polyhedron and so these species do not have the closed structures. The computations were performed at B3LYP/6-311+G(d,p), BPW91/6-311G(d,p) and B3LYP/6-311+G(3df,2p) levels of theory. Our interest in these compounds includes their potential use as hydrogen storage species and future clean sources of energy.  相似文献   

11.
Consistent vapor–liquid equilibria (VLE) data were determined for the binary systems 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa, with the purpose of studying the influence of the pressure in the separation of these binary mixtures. The two systems show a small positive deviation from ideality and do not present an azeotrope. VLE data for the binary systems have been correlated by the Wilson, UNIQUAC and NRTL equations with good results and have been predicted by the UNIFAC group contribution method.  相似文献   

12.
Experimental (liquid + liquid) equilibria involving ionic liquids {1,3-dimethylimidazolium methyl sulfate (MMIM MeSO4)}, {2-propanol + ethyl acetate + 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM PF6)} and {2-propanol + ethyl acetate + 1-hexyl-3-methylimidazolium hexafluorophosphate (HMIM PF6)} were carried out to separate the azeotropic mixture ethyl acetate and 2-propanol. Selectivity and distribution ratio values, derived from the tie-lines data, were presented in order to analyze the best separation solvent in a liquid extraction process. Experimental (liquid + liquid) equilibria data were compared with the correlated values obtained by means of the NRTL, Othmer-Tobias and Hand equations. These equations were verified to accurately correlate the experimental data.  相似文献   

13.
《Fluid Phase Equilibria》2004,218(1):57-68
Solid+liquid equilibria (SLE) of [n-alkanes (tridecane, hexadecane, octadecane, or eicosane) + cyclohexane] at very high pressures up to about 1.0 GPa have been investigated in the temperature range from 293 to 363 K using a thermostated apparatus for the measurements of transition pressures from the liquid to the solid state in two component isothermal solutions. The freezing temperature of each mixture increases monotonously with increasing pressure. The eutectic point of the binary systems shifts to a higher temperature and to a higher n-alkane concentration with increasing pressure. The pressure–temperature–composition relation of the high-pressure solid–liquid equilibria, a polynomial based on the general solubility equation at atmospheric pressure, was satisfactorily used. Additionally, the SLE of the binary system (tridecane+cyclohexane) at normal pressure was measured by the dynamic method. The results at high pressure for all systems were compared to that at normal pressure.  相似文献   

14.
15.
This paper reports the results of a new experimental study on the capacity of an ionic liquid to extract a sulfur compound from its mixtures with aliphatic hydrocarbons. With this aim, liquid + liquid equilibrium data of ternary systems containing 1-methyl-3-octyl-imidazolium bis(trifluoromethylsulfonyl)-imide ([C8mim][NTf2]), thiophene and n-hexane, n-heptane or n-hexadecane have been determined at T = 298.15 K. All systems showed high solubility of thiophene in the ionic liquid and low solubility of the ionic liquid in the n-alkane. The solute distribution coefficient decreases and the selectivity increases as the chain length of n-alkane increases. Both parameters are higher than unity in most of the cases. The experimental results have been correlated using NRTL activity coefficient model, and large deviations from experimental data have been found at high concentrations of thiophene with the heaviest hydrocarbons.  相似文献   

16.
An apparatus based on the static-analytic method was used to measure the vapor–liquid equilibria (VLE) for CO2 + alkanol systems. Equilibrium measurements for the CO2 + 1-propanol system were performed from 344 to 426 K. For the case of the CO2 + 2-propanol system, measurements were made from 334 to 443 K, and for the CO2 + 1-butanol were obtained from 354 to 430 K. VLE data were correlated with the Peng–Robinson equation of state using the classical and the Wong–Sandler mixing rules. Moreover, compressed liquid densities for the n-dodecane and n-tridecane were obtained via a vibrating tube densitometer at temperatures from 313 to 363 K and pressures up to 25 MPa. The Starling and Han (BWRS), and The five-parameter Modified Toscani-Swarcz (MTS) equations were used to correlate them. The experimental density data were compared with those from literature, and with the calculated values obtained from available equations for these n-alkanes.  相似文献   

17.
(Solid + liquid) phase equilibria (SLE) and (liquid + liquid) phase equilibria (LLE) for the binary systems: ionic liquid (IL) 1-butyl-3-methylimidazolim tosylate (p-toluenesulfonate) {[BMIM][TOS] + water, an alcohol (ethanol, or 1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol), or n-hexane, or an aromatic hydrocarbons (benzene, or toluene, or ethylbenzene, or propylbenzene, or thiophene)} have been determined at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (230 to 340) K. For the binary systems containing water, or an alcohol, simple eutectic diagrams were observed with complete miscibility in the liquid phase. As usual, with increasing chain length of the alcohol the solubility decreases. In the case of mixtures {IL + n-hexane, or benzene, or alkylbenzene, or thiophene} the eutectic systems with mutual immiscibility in the liquid phase with an upper critical solution temperature (UCST) were detected. The basic thermal properties of the pure IL, i.e. melting and glass-transition temperatures, as well as the enthalpy of fusion have been measured using a differential scanning microcalorimetry technique (DSC). Density at high temperatures was determined and extrapolated to 298.15 K. Well-known UNIQUAC, Wilson and NRTL equations have been used to correlate experimental SLE data sets for alcohols and water. For the systems containing immiscibility gaps {IL + n-hexane, or benzene, or alkylbenzene, or thiophene}, parameters of the LLE correlation equation have been derived using only the NRTL equation.  相似文献   

18.
A systematic investigation of the CPA model’s performance within solid–liquid equilibria (SLE) in binary mixtures (methane + ethane, methane + heptane, methane + benzene, methane + CO2, ethane + heptane, ethane + CO2, 1-propanol + 1,4-dioxane, ethanol + water, 2-propanol + water) is presented. The results from the binary mixtures are used to predict SLE behaviour in ternary mixtures (methane + ethane + heptane, methane + ethane + CO2). Our results are compared with experimental data found in the literature.  相似文献   

19.
Experimental vapor–liquid equilibria (VLE) for the CO2 + n-nonane and CO2 + n-undecane systems were obtained by using a 100-cm3 high-pressure titanium cell up to 20 MPa at four temperatures (315, 344, 373, and 418 K). The apparatus is based on the static-analytic method; which allows fast determination of the coexistence curve. For the CO2 + n-nonane system, good agreement was found between the experimental data and those reported in literature. No literature data were available for the CO2 + n-undecane system at high temperature and pressure. Experimental data were correlated with the Peng–Robinson equation of state using the classical and the Wong–Sandler mixing rules.  相似文献   

20.
Total vapour pressures, measured at the temperature 313.15 K, are reported for the ternary mixture (N,N-dimethylacetamide + methanol + water), and for binary constituents (N,N-dimethylacetamide + methanol) and (N,N-dimethylacetamide + water). The present results are compared with previously obtained data for binary mixtures (amide + water) and (amide + methanol), where amide=N-methylformamide, N,N-dimethylformamide, N-methyl-acetamide, 2-pyrrolidinone and N-methylpyrrolidinone. Moreover, it was found that excess Gibbs free energy of mixing for binary mixtures varies roughly linearly with the molar volume of amide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号