首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

During the preovulatory surge of gonadotropin-releasing hormone (GnRH), a very large amount of the peptide is released in the hypothalamo-hypophyseal portal blood for 24-36H00. To study whether this release is linked to a modification of the morphological organization of the GnRH-containing neurons, i.e. morphological plasticity, we conducted experiments in intact ewes at 4 different times of the oestrous cycle (before the expected LH surge, during the LH surge, and on day 8 and day 15 of the subsequent luteal phase). The cycle stage was verified by determination of progesterone and LH concentrations in the peripheral blood samples collected prior to euthanasia.  相似文献   

2.

Background  

In the laboratory, behavioral and physiological states of nocturnal rodents alternate, with a period near 24 h, between those appropriate for the night (e.g., elevated wheel-running activity and high melatonin secretion) and for the day (e.g., rest and low melatonin secretion). Under appropriate 24 h light:dark:light:dark conditions, however, rodents may be readily induced to express bimodal rest/activity cycles that reflect a global temporal reorganization of the central neural pacemaker in the hypothalamus. We examine here how the relative length of the light and dark phases of the environmental cycle influences this rhythm splitting and the necessity of a running wheel for expression of this entrainment condition.  相似文献   

3.

Background  

Recent in vitro evidence indicates that blockade of 5-hydroxytryptamine (5-HT) receptor 3 (5-HT3) is able to confer protection in different models of neuronal injury. The purpose of the present study was to investigate the effect of tropisetron, a 5-HT3 receptor antagonist, on infarct size and neurological score in a model of ischemic stroke induced by permanent middle cerebral artery occlusion (pMCAO) in the rat.  相似文献   

4.

Background  

Predominantly, magnetic resonance imaging (MRI) studies in animal models of Parkinson's disease (PD) have focused on alterations in T2 water 1H relaxation or 1H MR spectroscopy (MRS), whilst potential morphological changes and their relationship to histological or behavioural outcomes have not been appropriately addressed. Therefore, in this study we have utilised MRI to scan in vivo brains from rodents bearing a nigrostriatal lesion induced by intranigral injection of the proteasome inhibitor lactacystin.  相似文献   

5.

Background  

Microglia provide continuous immune surveillance of the CNS and upon activation rapidly change phenotype to express receptors that respond to chemoattractants during CNS damage or infection. These activated microglia undergo directed migration towards affected tissue. Importantly, the molecular species of chemoattractant encountered determines if microglia respond with pro- or anti-inflammatory behaviour, yet the signaling molecules that trigger migration remain poorly understood. The endogenous cannabinoid system regulates microglial migration via CB2 receptors and an as yet unidentified GPCR termed the 'abnormal cannabidiol' (Abn-CBD) receptor. Abn-CBD is a synthetic isomer of the phytocannabinoid cannabidiol (CBD) and is inactive at CB1 or CB2 receptors, but functions as a selective agonist at this Gi/o-coupled GPCR. N-arachidonoyl glycine (NAGly) is an endogenous metabolite of the endocannabinoid anandamide and acts as an efficacious agonist at GPR18. Here, we investigate the relationship between NAGly, Abn-CBD, the unidentified 'Abn-CBD' receptor, GPR18, and BV-2 microglial migration.  相似文献   

6.

Background  

Stargazin (γ2) and the closely related γ3, and γ4 transmembrane proteins are part of a family of proteins that may act as both neuronal voltage-dependent calcium channel (VDCC) γ subunits and transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazoleproponinc (AMPA) receptor regulatory proteins (TARPs). In this investigation, we examined the distribution patterns of the stargazin-like proteins γ2, γ3, and γ4 in the human central nervous system (CNS). In addition, we investigated whether human γ2 or γ4 could modulate the electrophysiological properties of a neuronal VDCC complex transiently expressed in Xenopus oocytes.  相似文献   

7.

Background  

Lurcher mice suffer from a complete Purkinje cell (PC) loss in the first four postnatal weeks. Parallel to this degeneration, GABAergic synapses in the deep cerebellar nuclei (DCN), the major recipient of the inhibitory PC projection, increase synaptic conductance. Here, we further investigated this phenomenon, using real-time RT-PCR to assess GABAA receptor subunit gene expression during PC degeneration.  相似文献   

8.

Background  

Early stages in the excitation cascade of Limulus photoreceptors are mediated by activation of Gq by rhodopsin, generation of inositol-1,4,5-trisphosphate by phospholipase-C and the release of Ca2+. At the end of the cascade, cGMP-gated channels open and generate the depolarizing receptor potential. A major unresolved issue is the intermediate process by which Ca2+ elevation leads to channel opening.  相似文献   

9.

Background  

Accumulated evidence suggests that hydrogen peroxide (H2O2) generated in cells during insulin stimulation plays an integral role in insulin receptor signal transduction. The role of insulin-induced H2O2 in neuronal insulin receptor activation and the origin of insulin-induced H2O2 in neurons remain unclear. The aim of the present study is to test the following hypotheses (1) whether insulin-induced H2O2 is required for insulin receptor autophosphorylation in neurons, and (2) whether mitochondrial respiratory chain is involved in insulin-stimulated H2O2 production, thus playing an integral role in insulin receptor autophosphorylation in neurons.  相似文献   

10.

Background  

The suprachiasmatic nucleus (SCN) contains the master circadian clock that regulates daily rhythms of many physiological and behavioural processes in mammals. Previously we have shown that prokineticin 2 (PK2) is a clock-controlled gene that may function as a critical SCN output molecule responsible for circadian locomotor rhythms. As light is the principal zeitgeber that entrains the circadian oscillator, and PK2 expression is responsive to nocturnal light pulses, we further investigated the effects of light on the molecular rhythm of PK2 in the SCN. In particular, we examined how PK2 responds to shifts of light/dark cycles and changes in photoperiod. We also investigated which photoreceptors are responsible for the light-induced PK2 expression in the SCN. To determine whether light requires an intact functional circadian pacemaker to regulate PK2, we examined PK2 expression in cryptochrome1,2-deficient (Cry1-/-Cry2-/-) mice that lack functional circadian clock under normal light/dark cycles and constant darkness.  相似文献   

11.

Background  

NMDA (N-methyl-D-aspartic acid) is a widely known agonist for a class of glutamate receptors, the NMDA type. Synthetic NMDA elicits very strong activity for the induction of hypothalamic factors and hypophyseal hormones in mammals. Moreover, endogenous NMDA has been found in rat, where it has a role in the induction of GnRH (Gonadotropin Releasing Hormone) in the hypothalamus, and of LH (Luteinizing Hormone) and PRL (Prolactin) in the pituitary gland.  相似文献   

12.
The efficacy of High-Frequency Chest Compression (HFCC) airway clearance therapy is linked to the induced-peak expiratory airflow pulse (IPEF) at the patient's mouth. The authors' goal was to determine the conditions that yield the highest IPEF using HFCC running at 6 Hz in conjunction with voicing intervention. A pilot experimental study was conducted in a laboratory setting. Six adults with moderate to mild cystic fibrosis (CF) and 10 healthy adults participated. When the component characteristics of voicing were disregarded in data analysis of four conditions, voicing only intervention (V1I0), HFCC only intervention (V0I1), voicing intervention and HFCC intervention combinations (V1I1) and nonintervention (V0I0), V0I1 had significantly higher (P < 0.0001) IPEF. Data analyses of 64 separate voicing component characteristics, frequency (×4), amplitude (×4), and rhythm (×2) of voicing intervention, in addition to absence and presence of HFCC intervention (V1I0 and V1I1), were examined. One condition in V1I0 had significantly higher (P < 0.000001) IPEF than other conditions in V1I0 and V1I1 in both experimental and control groups. Based on these findings, V1I1 may yield higher IPEF than V0I1. One condition of amplitude component of voicing and one condition of rhythm component of voicing had significantly higher (P < 0.0001) IPEF than other conditions of amplitude and rhythm components in both CF and control subjects. Analysis of this combined condition of V1I1 showed that this specific condition of V1I1 had significantly higher (P < 0.000001) IPEF than any other conditions in V1I1 and V0I1.  相似文献   

13.

Background

Late cerebral ischemia carries high morbidity and mortality after subarachnoid hemorrhage (SAH) due to reduced cerebral blood flow (CBF) and the subsequent cerebral ischemia which is associated with upregulation of contractile receptors in the vascular smooth muscle cells (SMC) via activation of mitogen-activated protein kinase (MAPK) of the extracellular signal-regulated kinase (ERK)1/2 signal pathway. We hypothesize that SAH initiates cerebrovascular ERK1/2 activation, resulting in receptor upregulation. The raf inhibitor will inhibit the molecular events upstream ERK1/2 and may provide a therapeutic window for treatment of cerebral ischemia after SAH.

Results

Here we demonstrate that SAH increases the phosphorylation level of ERK1/2 in cerebral vessels and reduces the neurology score in rats in additional with the CBF measured by an autoradiographic method. The intracisternal administration of SB-386023-b, a specific inhibitor of raf, given 6 h after SAH, aborts the receptor changes and protects the brain from the development of late cerebral ischemia at 48 h. This is accompanied by reduced phosphorylation of ERK1/2 in cerebrovascular SMC. SAH per se enhances contractile responses to endothelin-1 (ET-1), 5-carboxamidotryptamine (5-CT) and angiotensin II (Ang II), upregulates ETB, 5-HT1B and AT1 receptor mRNA and protein levels. Treatment with SB-386023-b given as late as at 6 h but not at 12 h after the SAH significantly decreased the receptor upregulation, the reduction in CBF and the neurology score.

Conclusion

These results provide evidence for a role of the ERK1/2 pathway in regulation of expression of cerebrovascular SMC receptors. It is suggested that raf inhibition may reduce late cerebral ischemia after SAH and provides a realistic time window for therapy.  相似文献   

14.

Background  

The channel catfish, Ictalurus punctatus, is invested with a high density of cutaneous taste receptors, particularly on the barbel appendages. Many of these receptors are sensitive to selected amino acids, one of these being a receptor for L-arginine (L-Arg). Previous neurophysiological and biophysical studies suggested that this taste receptor is coupled directly to a cation channel and behaves as a ligand-gated ion channel receptor (LGICR). Earlier studies demonstrated that two lectins, Ricinus communis agglutinin I (RCA-I) and Phaseolus vulgaris Erythroagglutinin (PHA-E), inhibited the binding of L-Arg to its presumed receptor sites, and that PHA-E inhibited the L-Arg-stimulated ion conductance of barbel membranes reconstituted into lipid bilayers.  相似文献   

15.

Background

G protein-coupled receptors (GPCRs) interact with heterotrimeric GTP-binding proteins (G proteins) to modulate acute changes in intracellular messenger levels and ion channel activity. In contrast, long-term changes in cellular growth, proliferation and differentiation are often mediated by tyrosine kinase receptors and certain GPCRs by activation of mitogen-activated protein (MAP) kinases. Complex interactions occur between these signaling pathways, but the specific mechanisms of such regulatory events are not well-understood. In particular it is not clear whether GPCRs are modulated by tyrosine kinase receptor-MAP kinase pathways.

Results

Here we describe tyrosine kinase receptor regulation of a GPCR via MAP kinase. Insulin reduced the activity of the 5-HT2C receptor in choroid plexus cells which was blocked by the MAP kinase kinase (MEK) inhibitor, PD 098059. We demonstrate that the inhibitory effect of insulin and insulin-like growth factor type 1 (IGF-1) on the 5-HT2C receptor is dependent on tyrosine kinase, RAS and MAP kinase. The effect may be receptor-specific: insulin had no effect on another GPCR that shares the same G protein signaling pathway as the 5-HT2C receptor. This effect is also direct: activated MAP kinase mimicked the effect of insulin, and removing a putative MAP kinase site from the 5-HT2C receptor abolished the effect of insulin.

Conclusion

These results show that insulin signaling can inhibit 5-HT2C receptor activity and suggest that MAP kinase may play a direct role in regulating the function of a specific GPCR.  相似文献   

16.

Background  

P2X2 receptor is an ATP-activated ion channel which is widely expressed in the nervous system, and mediates synaptic transmission.  相似文献   

17.

Abstract  

Silver nanocrystal superlattices (NCSs) stabilized by hexadecanethiol have been prepared through reduction of [Ag(hexadecanethiolate)] n , formed in situ by reaction of the organometallic precursor [Ag(C6F5)] and hexadecanethiol. The nanostructures have been characterized by transmission electron microscopy (TEM) and X-ray diffractometry (XRD). Several reaction parameters such as solvent (anisole or toluene), reaction temperature (150 or 120 °C) or silver:thiol ratio (1:1 or 2:1) have been studied. The NCSs are formed by silver nanoparticles which sizes range from 3.7 to 5.1 nm, depending on the reaction conditions. The formation a of lamellar phase of di-n-hexadecyldisulfide by oxidation of the hexadecanethiolate ligands bonded to Ag(I) is detected by XRD.  相似文献   

18.
19.

Background  

In rat, deafferentation of one labyrinth (unilateral labyrinthectomy) results in a characteristic syndrome of ocular and motor postural disorders (e.g., barrel rotation, circling behavior, and spontaneous nystagmus). Behavioral recovery (e.g., diminished symptoms), encompassing 1 week after unilateral labyrinthectomy, has been termed vestibular compensation. Evidence suggesting that the histamine H3 receptor plays a key role in vestibular compensation comes from studies indicating that betahistine, a histamine-like drug that acts as both a partial histamine H1 receptor agonist and an H3 receptor antagonist, can accelerate the process of vestibular compensation.  相似文献   

20.

Background  

Defective iron homeostasis may be involved in the development of some diseases within the central nervous system. Although the expression of genes involved in normal iron balance has been intensively studied in other tissues, little is known about their expression in the brain. We investigated the mRNA levels of hepcidin (HAMP), HFE, neogenin (NEO1), transferrin receptor 1 (TFRC), transferrin receptor 2 (TFR2), and hemojuvelin (HFE2) in normal human brain, brain tumors, and astrocytoma cell lines. The specimens included 5 normal brain tissue samples, 4 meningiomas, one medulloblastoma, 3 oligodendrocytic gliomas, 2 oligoastrocytic gliomas, 8 astrocytic gliomas, and 3 astrocytoma cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号