首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the resonant dynamics of a two-degree-of-freedom system composed of a linear oscillator weakly coupled to a strongly non-linear one, with an essential (non-linearizable) cubic stiffness non-linearity. For the undamped system this leads to a series of internal resonances, depending on the level of (conserved) total energy of oscillation. We study in detail the 1:1 internal resonance, and show that the undamped system possesses stable and unstable synchronous periodic motions (non-linear normal modes—NNMs), as well as, asynchronous periodic motions (elliptic orbits—EOs). Furthermore, we show that when damping is introduced certain NNMs produce resonance capture phenomena, where a trajectory of the damped dynamics gets ‘captured’ in the neighborhood of a damped NNM before ‘escaping’ and becoming an oscillation with exponentially decaying amplitude. In turn, these resonance captures may lead to passive non-linear energy pumping phenomena from the linear to the non-linear oscillator. Thus, sustained resonance capture appears to provide a dynamical mechanism for passively transferring energy from one part of the system to another, in a one-way, irreversible fashion. Numerical integrations confirm the analytical predictions.  相似文献   

2.
A non-linear multi-mode of vibration arises from the coupling of two or more normal modes of a non-linear system under free-vibration. The ensuing motion takes place on a 2M-dimensional invariant manifold in the phase space of the system, M being the number of coupled linear modes; the manifold contains a stable equilibrium point of interest, and at that point is tangent to the 2M-dimensional eigenspace of the system linearised about that equilibrium point, which characterises the corresponding M linear modes. On this manifold, M pairs of state variables govern the dynamics of the system; that is, the system behaves like an M-degree-of-freedom oscillator. Non-linear multi-modes may therefore come about when the system exhibits non-linear coupling among generalised co-ordinates. That is the case, for instance, of internal resonance of the 1:2 or 1:3 types, for systems with quadratic or cubic non-linearities, respectively, in which a four-dimensional manifold should be determined. Evaluation of non-linear multi-modes poses huge computational challenges, which is the explanation for very limited reports on the subject in the literature so far. The authors developed a procedure to determine the non-linear multi-modes for finite-element models of plane frames, using the method of multiple scales. This paper refers to the case of quadratic non-linearities. The results obtained by the proposed technique are in good agreement with those coming out from direct integration of the equations of motion in the time domain and also with those few available in the literature.  相似文献   

3.
The free non-linear vibration of a rotating beam has been considered in this paper. The von Karman strain-displacement relations are implemented. Non-linear equations of motion are obtained by Hamilton’s principle. Results are obtained by applying the method of multiple scales to a set of discretized ordinary differential equations which obtained by using the Galerkin discretization method. This set contains coupling between transverse and axial displacements as quadratic and cubic geometric non-linearities. Non-linear normal modes and non-linear natural frequencies with or without internal resonance are observed. In the internal resonance case, the internal resonance between two transverse modes and between one transverse and one axial mode are explored. Obtained results in this study are compared with those obtained from literature. The stability and some dynamic characteristics of the non-linear normal modes such as the phase portrait, Poincare section and power spectrum diagrams have been inspected. It is shown that, for the first internal resonance case, the beam has one stable or degenerate uncoupled mode and either: (a) one stable coupled mode, (b) one unstable coupled mode, (c) two stable and one unstable coupled modes, (d) three stable coupled modes, and (e) one stable coupled mode. On the other hand, for the second internal resonance case, the beam has one stable or unstable or degenerate uncoupled mode and either: (a) two stable coupled modes, (b) two unstable coupled modes, and (c) one stable coupled mode depending on the parameters.  相似文献   

4.
In this paper, an invariant manifold approach is introduced for the generationof reduced-order models for nonlinear vibrations of multi-degrees-of-freedomsystems. In particular, the invariant manifold approach for defining andconstructing nonlinear normal modes of vibration is extended to the case ofmulti-mode manifolds. The dynamic models obtained from this technique capture the essential coupling between modes of interest, while avoiding coupling fromother modes. Such an approach is useful for modeling complex systemresponses, and is essential when internal resonances exist between modes.The basic theory and a general, constructive methodology for the method arepresented. It is then applied to two example problems, one analytical andthe other finite-element based. Numerical simulation results are obtainedfor the full model and various types of reduced-order models, including theusual projection onto a set of linear modes, and the invariant manifoldapproach developed herein. The results show that the method is capable ofaccurately representing the nonlinear system dynamics with relatively fewdegrees of freedom over a range of vibration amplitudes.  相似文献   

5.
Non-linear systems are here tackled in a manner directly inherited from linear ones, that is, by using proper normal modes of motion. These are defined in terms of invariant manifolds in the system's phase space, on which the uncoupled system dynamics can be studied. Two different methodologies which were previously developed to derive the non-linear normal modes of continuous systems — one based on a purely continuous approach, and one based on a discretized approach to which the theory developed for discrete systems can be applied-are simultaneously applied to the same study case-an Euler-Bernoulli beam constrained by a non-linear spring-and compared as regards accuracy and reliability. Numerical simulations of pure non-linear modal motions are performed using these approaches, and compared to simulations of equations obtained by a classical projection onto the linear modes. The invariance properties of the non-linear normal modes are demonstrated, and it is also found that, for a pure non-linear modal motion, the invariant manifold approach achieves the same accuracy as that obtained using several linear normal modes, but with significantly reduced computational cost. This is mainly due to the possibility of obtaining high-order accuracy in the dynamics by solving only one non-linear ordinary differential equation.  相似文献   

6.
The fundamental and subharmonic resonances of a two degree-of-freedom oscillator with cubic stiffness nonlinearities and linear viscous damping are examined using a multiple-seales averaging analysis. The system is in a 1–1 internal resonance, i.e., it has two equal linearized eigenfrequencies, and it possesses nonlinear normal modes. For weak coupling stiffnesses the internal resonance gives rise to a Hamiltonian Pitchfork bifurcation of normal modes which in turn affects the topology of the fundamental and subharmonic resonance curves. It is shown that the number of resonance branches differs before and after the mode bifurcation, and that jump phenomena are possible between forced modes. Some of the steady state solutions were found to be very sensitive to damping: a whole branch of fundamental resonances was eliminated even for small amounts of viscous damping, and subharmonic steady state solutions were shifted by damping to higher frequencies. The analytical results are verified by a numerical integration of the equations of motion, and a discussion of the effects of the mode bifurcation on the dynamics of the system is given.  相似文献   

7.
Linear oscillator coupled to damped strongly nonlinear attachment with small mass is considered as a model design for nonlinear energy sink (NES). Damped nonlinear normal modes of the system are considered for the case of 1:1 resonance by combining the invariant manifold approach and multiple scales expansion. Special asymptotical structure of the model allows a clear distinction between three time scales. These time scales correspond to fast vibrations, evolution of the system toward the nonlinear normal mode and time evolution of the invariant manifold, respectively. Time evolution of the invariant manifold may be accompanied by bifurcations, depending on the exact potential of the nonlinear spring and value of the damping coefficient. Passage of the invariant manifold through bifurcations may bring about destruction of the resonance regime and essential gain in the energy dissipation rate.  相似文献   

8.
Some recent results on the Lie symmetry generators of equations with a small parameter and the relationship between symmetries and conservation laws for such equations are used to construct first integrals and Lagrangians for autonomous weakly non-linear systems, y″+εF(t)y′+y=f(y,y′). An adaptation of a theorem that provides the point symmetry generators that leave the invariant functional involving a Lagrangian for such equations is presented. A detailed example to illustrate the method is given (and other examples are discussed). The (approximate) symmetry generators, invariants and Lagrangians maintain the perturbation order of the ‘small parameter’ stipulated in the equation — first order in this case.  相似文献   

9.
悬索在考虑1:3内共振情况下的动力学行为   总被引:2,自引:0,他引:2  
研究了悬索在受到外激励作用下考虑1∶3内共振情况下的两模态非线性响应.对于一定范围内悬索的弹性-几何参数而言,悬索的第三阶面内对称模态的固有频率接近于第一阶面内对称模态固有频率的三倍,从而导致1∶3内共振的存在.首先利用Galerkin方法把悬索的面内运动方程进行离散,然后利用多尺度法对离散的运动方程进行摄动得到主共振情况下的平均方程.接下来对平均方程的稳态解、周期解以及混沌解进行了研究.最后利用Runge-Kutta法研究了悬索两自由度离散模型的非线性响应.  相似文献   

10.
Non-linear interactions in a hinged-hinged uniform moderately curved beam with a torsional spring at one end are investigated. The two-mode interaction is a one-to-one autoparametric resonance activated in the vicinity of veering of the frequencies of the lowest two modes and results from the non-linear stretching of the beam centerline. The excitation is a base acceleration that is involved in a primary resonance with either the first mode only or with both modes. The ensuing non-linear responses and their stability are studied by computing force- and frequency-response curves via bifurcation analysis tools. Both the sensitivity of the internal resonance detuning—the gap between the veering frequencies—and the linear modal structure are investigated by varying the rise of the beam half-sinusoidal rest configuration and the torsional spring constant. The internal and external resonance detunings are varied accordingly to construct the non-linear system response curves. The beam mixed-mode response is shown to undergo several bifurcations, including Hopf and homoclinic bifurcations, along with the phenomenon of frequency island generation and mode localization.  相似文献   

11.
The non-linear normal modes (NNMs) and their bifurcation of a complex two DOF system are investigated systematically in this paper. The coupling and ground springs have both quadratic and cubic non-linearity simultaneously. The cases of ω1:ω2=1:1, 1:2 and 1:3 are discussed, respectively, as well as the case of no internal resonance. Approximate solutions for NNMs are computed by applying the method of multiple scales, which ensures that NNM solutions can asymtote to linear normal modes as the non-linearity disappears. According to the procedure, NNMs can be classified into coupled and uncoupled modes. It is found that coupled NNMs exist for systems with any kind of internal resonance, but uncoupled modes may appear or not appear, depending on the type of internal resonance. For systems with 1:1 internal resonance, uncoupled NNMs exist only when coefficients of cubic non-linear terms describing the ground springs are identical. For systems with 1:2 or 1:3 internal resonance, in additional to one uncoupled NNM, there exists one more uncoupled NNM when the coefficients of quadratic or cubic non-linear terms describing the ground springs are identical. The results for the case of internal resonance are consistent with ones for no internal resonance. For the case of 1:2 internal resonance, the bifurcation of the coupled NNM is not only affected by cubic but also by quadratic non-linearity besides detuning parameter although for the cases of 1:1 and 1:3 internal resonance, only cubic non-linearity operate. As a check of the analytical results, direct numerical integrations of the equations of motion are carried out.  相似文献   

12.
Wave fronts admitting discontinuities only in the derivatives of the dependent variables are by convention called ‘weak’ waves. For the special case of discontinuous first-order derivatives, the fronts are customarily called ‘acceleration’ waves. If the governing equations are quasi-linear, then the weak waves are necessarily characteristic surfaces. Sometimes, these surfaces are also referred to as ‘singular surfaces’ of order r ? 1, where r stands for the order of the first discontinuous derivatives. This latter approach is adopted in this paper and applied to governing equations which form a set of first-order quasi-linear hyperbolic equations. When these equations are written in terms of singular surface coordinates, simplification occurs upon differencing equations written on the front and rear sides of the surface: a set of algebraic (‘connection’) equations is generated for the discontinuities in the normal derivatives of the dependent variables across the surface. When a similar operation is performed on the governing equations written for second-order derivatives, a set of first-order differential (‘transport’) equations is generated.  相似文献   

13.
Typical non-linear effects, e.g. dependence of the resonance frequency on the amplitude, superharmonics in spectra and a non-linear relationship between excitation voltage and vibration amplitude as well as jump phenomena are observed in experiments with piezoceramics excited at resonance by weak electric fields. These non-linear effects can be observed for both the piezoelectric 31- and the 33-effect. In contrast to the well-known non-linear effects exhibited by piezoceramics in the presence of strong electric fields, these effects are not described in detail in the literature.In this paper, we attempt to model these phenomena using an electric enthalpy density to capture the cubic-like effects observed in the experiments. The equations of motion for the system under consideration are derived via the Ritz method using Hamilton's principle. The ‘non-linear’ parameters are identified and the numerical results are compared to those obtained experimentally. The effects described herein may have a significant influence in structures excited close to resonance frequencies via piezoelectric elements.  相似文献   

14.
We investigate the nonlinear response of an infinitely long, circularcylindrical shell to a primary-resonance excitation of one of itsflexural modes, which is involved in a one-to-two internal resonancewith the breathing mode. The excited flexural mode is involved in aone-to-one internal resonance with its orthogonal flexural mode. Thereare two simultaneous internal (autoparametric) resonances: two-to-oneand one-to-one. The method of multiple scales is directly applied to thepartial-differential equations to obtain a system of six first-ordernonlinear ordinary-differential equations governing modulation of theamplitudes and phases of the three interacting modes. In the absence ofdamping, the modulation equations are derivable from a Lagrangian,reflecting the conservative nature of the system. The modulationequations are used to study the equilibrium and dynamic solutions andtheir stability and hence their bifurcations. The response may be eithera two-mode or a three-mode solution. For certain excitation parameters,the equilibrium three-mode solutions undergo Hopf bifurcations. Acombination of a shooting technique and Floquet theory is used tocalculate limit cycles and their stability, and hence theirbifurcations.  相似文献   

15.
The non-linear modal properties of a vibrating 2-DOF system with non-smooth (piecewise linear) characteristics are investigated; this oscillator can suitably model beams with a breathing crack or systems colliding with an elastic obstacle. The system having two discontinuity boundaries is non-linearizable and exhibits the peculiar feature of a number of non-linear normal modes (NNMs) that are greater than the degrees of freedom. Since the non-linearities are concentrated at the origin, its non-linear frequencies are independent of the energy level and uniquely depend on the damage parameter. An analysis of the NNMs has been performed for a wide range of damage parameter by employing numerical procedures and Poincaré maps. The influence of damage on the non-linear frequencies has been investigated and bifurcations characterized by the onset of superabundant modes in internal resonance, with a significantly different shape than that of modes on fundamental branch, have been revealed.  相似文献   

16.
Chin  Char-Ming  Nayfeh  Ali H. 《Nonlinear dynamics》1999,20(2):131-158
The nonlinear planar response of a hinged-clamped beam to a principal parametric resonance of either its first or second mode or a combination parametric resonance of the additive type of its first two modes is investigated. The analysis accounts for mid-plane stretching, a static axial load, a restraining spring at one end, and modal damping. The natural frequency of the second mode is approximately three times the natural frequency of the first mode for a range of static axial loads, resulting in a three-to-one internal resonance. The method of multiple scales is used to attack directly the governing nonlinear integral-partial-differential equation and associated boundary conditions and derive three sets of four first-order nonlinear ordinary-differential equations describing the modulation of the amplitudes and phases of the first two modes in the cases of (a) principal parametric resonance of either the first or the second mode, and (b) a combination parametric resonance of the additive type of these modes. Periodic motions and periodically and chaotically modulated motions of the beam are determined by investigating the equilibrium and dynamic solutions of the modulation equations. For the case of principal parametric resonance of the first mode or combination parametric resonance of the additive type, trivial and two-mode solutions are possible, whereas for the case of parametric resonance of the second mode, trivial, single, and two-mode solutions are possible. The trivial and two-mode equilibrium solutions of the modulation equations may undergo either a supercritical or a subcritical Hopf bifurcation, depending on the magnitude of the axial load. For some excitation parameters, we found complex responses including period-doubling bifurcations and blue-sky catastrophes.  相似文献   

17.
研究了悬索在受到外激励作用和考虑1∶3内共振情况下的两模态非线性响应。对于一定范围内的悬索弹性-几何参数而言,悬索第三阶面内对称模态的固有频率接近于第一阶面内对称模态的固有频率的3倍,从而导致1∶3内共振的存在。首先利用Galerkin方法把悬索的面内运动方程进行离散,然后利用多尺度法对离散的运动方程进行摄动,可得到两组不同主共振情况下的平均方程。  相似文献   

18.
The phenomenon of internal resonance is known as the exchange of energy between the modes and the existence of coupled-mode response under a single-mode excitation. This phenomenon is observed whenever a non-linear normal mode loses its stability, called the modal coupling. The details of modal coupling are formulated in the free vibrations of two-degree-of-freedom systems, and compared with internal resonance. The theory is based on the structural change in Poincaré map due to the stability change of normal modes. It is shown that every change in stability of normal modes gives rise to a pitchfork or a period-doubling bifurcation. The functional form is derived to compute the coupled modes by the method of harmonic balance. Examples are given to describe the procedure of stability analysis of non-linear normal modes, to compute the coupled modes, and then to demonstrate that results of internal resonances can be derived by model coupling. Other examples are given to demonstrate that the results of some modal couplings cannot be obtained by internal resonances.  相似文献   

19.
Nonlinear normal modes for elastic structures have been studied extensively in the literature. Most studies have been limited to small nonlinear motions and to structures with geometric nonlinearities. This work investigates the nonlinear normal modes in elastic structures that contain essential inertial nonlinearities. For such structures, based on the works of Crespo da Silva and Meirovitch, a general methodology is developed for obtaining multi-degree-of-freedom discretized models for structures in planar motion. The motion of each substructure is represented by a finite number of substructure admissible functions in a way that the geometric compatibility conditions are automatically assured. The multi degree-of-freedom reduced-order models capture the essential dynamics of the system and also retain explicit dependence on important physical parameters such that parametric studies can be conducted. The specific structure considered is a 3-beam elastic structure with a tip mass. Internal resonance conditions between different linear modes of the structure are identified. For the case of 1:2 internal resonance between two global modes of the structure, a two-mode nonlinear model is then developed and nonlinear normal modes for the structure are studied by the method of multiple time scales as well as by a numerical shooting technique. Bifurcations in the nonlinear normal modes are shown to arise as a function of the internal mistuning that represents variations in the tip mass in the structure. The results of the two techniques are also compared.  相似文献   

20.
以脉动流输流管为例,利用非线性模态技术和一种数值迭代法研究陀螺连续体的非线性参数振动响应问题. 通过谐波平衡法将系统非线性非自治控制方程转化为拟自治方程,并在状态空间上利用不变流形法构造系统的非线性模态. 以对应自治系统的解为初值,采用一种数值迭代法来求解拟自治控制方程的模态系数,结果证明了该迭代法的快速收敛性. 在频域分析中得到了幅频响应和相空间上的不变流形,而在时域复模态分析中则发现了参激陀螺系统的正交相位差和行波振动现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号