共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The partial molar volumes, , and partial molar heat capacities, , at infinite dilution have been determined for the compounds N-acetylasparaginamide, N-acetylglutaminamide, N-acetyltyrosinamide, and N-acetyllysinamide monohydrochloride in aqueous solution at T = (288.15, 298.15, 313.15, and 328.15) K. These results, along with the literature data for the compound N-acetylglycinamide, have been used to calculate the amino acid side-chain contributions to the thermodynamic properties. These side-chain contributions are compared with those obtained using small peptides as side-chain model compounds. 相似文献
3.
N.N. Wankhede 《The Journal of chemical thermodynamics》2006,38(12):1664-1668
Densities and viscosities of the binary mixtures of 2,4,6-trimethyl-1,3,5-trioxane with methyl acetate, ethyl acetate, and 1-butyl acetate were measured over the entire mole fractions at (298.15, 303.15, and 308.15) K. Using the experimental values of densities ρ and viscosities η, excess molar volumes VE, viscosity deviations δη were calculated. The values of excess molar volumes VE and viscosity deviations δη were fitted to the Redlich-Kister polynomial. 相似文献
4.
Jagadish G. Baragi 《The Journal of chemical thermodynamics》2006,38(12):1717-1724
Experimental data on density, viscosity, and refractive index at T = (298.15, 303.15, and 308.15) K, while speed of sound values at T = 298.15 K are presented for the binary mixtures of (methylcyclohexane + benzene), methylbenzene (toluene), 1,4-dimethylbenzene (p-xylene), 1,3,5-trimethylbenzene (mesitylene), and methoxybenzene (anisole). From these data of density, viscosity, and refractive index, the excess molar volume, the deviations in viscosity, molar refraction, speed of sound, and isentropic compressibility have been calculated. The computed values have been fitted to Redlich-Kister polynomial equation to derive the coefficients and estimate the standard errors. Variations in the calculated excess quantities for these mixtures have been studied in terms of molecular interactions between the component liquids and the effects of methyl and methoxy group substitution on benzene ring. 相似文献
5.
Molar conductance of lithium acetate, sodium acetate and potassium acetate were studied in aqueous 2-butanol solutions with an alcohol mass fraction (w2) of 0.70, 0.80 and 0.90 at 298.15, 303.15 and 308.15 K. The conductance data were analyzed with the Fuoss conductance-concentration equation to evaluate the limiting molar conductances (Λ0), association constants (KA,c) and cosphere diameter (R) for ion-pair formation. Gibbs energy (ΔG0), enthalpy (ΔH0) and entropy (ΔS0) for ion-association reaction were derived from the temperature dependence of KA,c. Activation energy for ionic movement (ΔH#) was derived from the temperature dependence of Λ0. Based on the composition dependence of Walden products (Λ0η0) and different thermodynamic properties (ΔG0,ΔH0, ΔS0 and ΔH#), the influence of the solvent composition on ion-association and solvation behavior of ions were discussed in terms of ion-solvent, ion-ion interactions and the structural changes in the mixed solvent media. 相似文献
6.
Guler Ayranci 《The Journal of chemical thermodynamics》2007,39(12):1620-1631
Apparent molar volumes and apparent molar isentropic compressibilities of ascorbic acid (vitamin C) and thiamine hydrochloride (vitamin B1) were determined from accurately measured density and sound velocity data in water and in aqueous NaCl solutions at (283.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K. These volume and compressibility data were extrapolated to zero concentration using suitable empirical or theoretical equations to determine the corresponding infinite dilution values. Apparent molar expansibilities at infinite dilution were determined from slopes of apparent molar volume vs. temperature plots. Ionization of both ascorbic acid and thiamine hydrochloride were suppressed using sufficiently acidic solutions. Apparent molar volumes at infinite dilution for ascorbic acid and thiamine hydrochloride were found to increase with temperature in acidic solutions and in the presence of co-solute, NaCl. Apparent molar expansibility at infinite dilution were found to be constant over the temperature range studied and were all positive, indicating the hydrophilic character of the two vitamins studied in water and in the presence of co-solute, NaCl. Apparent molar isentropic compressibilities of ascorbic acid at infinite dilution were positive in water and in the presence of co-solute, NaCl, at low molalities. Those of thiamine hydrochloride at infinitive dilution were all negative, consistent with its ionic nature. Transfer apparent molar volumes of vitamins at infinite dilution from water solutions to NaCl solutions at various temperatures were determined. The results were interpreted in terms of complex vitamin-water-co-solute (NaCl) interactions. 相似文献
7.
A high pressure flow-mixing isothermal calorimeter is used to determine the excess molar enthalpies of methylformate + (1-propanol, 2-propanol, 1-butanol, 2-butanol and 1-pentanol) at T = 298.15 K and p = (5.0, 10.0) MPa, and methylformate + 1-propanol at T = 333.15 K and p = 10.0 MPa. The Redlich-Kister equation is fit to the experimental results. 相似文献
8.
Gy. Jákli 《The Journal of chemical thermodynamics》2007,39(12):1589-1600
Densities of LiCl, NaCl, KCl, and CsCl in normal and heavy water solutions have been measured using a vibrating-tube densitometer with (1-2) · 10−6 precision at T = (288.15, 298.15, and 308.15) K over a wide concentration range from (0.1 to 5) molal, m. Solvent isotope effects (IE) on apparent molar volumes, as well as both on solute- and solvent-partial molar volumes were evaluated to establish their trend with cationic size in a systematic way. With the exception of the LiCl, both the “normal” standard IEs, , and the “inverse” excess IEs of the solutes, , increase linearly with the electrostriction effect of the cations (1/rion), while with increasing temperature and/or concentration, the excess effects become almost the same.In contrast to the solute excess IEs, which show linear m1/2-dependence over the whole concentration range, except for LiCl, the “inverse” excess IEs of the solvent, , hardly change over the lower concentration range (, m ? 1). However, with further increase of the concentration, these IEs significantly decrease. Individual ionic standard and excess volume contributions are derived and the results are discussed in terms of structural concepts of ionic hydration. 相似文献
9.
Begoña González 《The Journal of chemical thermodynamics》2007,39(12):1578-1588
Densities and dynamic viscosities for methanol or ethanol with water, ethyl acetate, and methyl acetate at several temperatures T = (293.15, 298.15, and 303.15) K have been measured over the whole composition range and 0.1 MPa, along with the properties of the pure components. Excess molar volumes, viscosity deviations, and excess free energy of activation for the binary systems at the above-mentioned temperatures, were calculated and fitted to the Redlich-Kister equation to determine the fitting parameters and the root-mean-square deviations. UNIQUAC equation was used to correlate the experimental viscosity data. The UNIFAC-VISCO method and ASOG-VISCO method, based on contribution groups, were used to predict the dynamic viscosities of the binary mixtures. 相似文献
10.
F. Alaoui E. Montero J.P. BazileM.J.P. Comuñas G. GallieroC. Boned 《Fluid Phase Equilibria》2011,301(2):131-136
This work reports new density data (178 points) of 1-butanol at twelve temperatures between 293.15 and 403.15 K (every 10 K), and fifteen pressures from 0.1 up to 140 MPa (every 10 MPa). An Anton Paar vibrating tube densimeter, calibrated with an uncertainty of ±0.5 kg m−3 was used to perform these measurements. The experimental density data were fitted with the Tait-like equation with low standard deviations. In addition, the isobaric thermal expansivity and the isothermal compressibility have been derived from the Tait-like equation. 相似文献
11.
E.C. Ihmels J. Safarov E. Hassel J. Gmehling 《The Journal of chemical thermodynamics》2005,37(12):1318-1326
The (p, ρ, T) properties of pure methanol, the (p, ρ, T) properties and apparent molar volumes V? of ZnBr2 in methanol at T = (298.15 to 398.15) K and pressures up to p = 40 MPa are reported, and apparent molar volumes have been evaluated. The experimental (p, ρ, T, m) values were described by an equation of state. For the solutions the experiments were carried out at molalities m = (0.05772, 0.37852, 0.71585 and 1.95061) mol · kg−1 of zinc bromide. 相似文献
12.
13.
In this paper, excess thermodynamic functions have been computed from the measured values of density, viscosity, and refractive index at T = (298.15, 303.15, and 308.15) K, ultrasonic velocity at T = 298.15 K over the entire mixture composition range of (anisole with ethanol, propan-1-ol, propan-2-ol, butan-1-ol, pentan-1-ol, or 3-methyl butan-1-ol). Excess molar volume, VE has been calculated from densities, whereas deviations in viscosity, Δη, were computed from the measured viscosities. From ultrasonic velocities, isentropic compressibilities were calculated, from which deviations in isentropic compressibility, Δks have been computed. Lorenz-Lorentz mixture rule was used to compute molar refractivity, R from refractivity index data and from these data, deviations in molar refractivity, ΔR have been computed. Computed thermodynamic quantities have been fitted to Redlich and Kister polynomial equation to derive the coefficients and standard errors between experimental and predicted quantities. Intermolecular interactions between anisole and alkanols have been studied based on the computed excess thermodynamic quantities. 相似文献
14.
15.
Densities, viscosities, and ultrasonic velocities of binary mixtures of trichloromethane with methanol, ethanol, propan-1-ol, and butan-1-ol have been measured over the entire range of composition, at (298.15 and 308.15) K and at atmospheric pressure. From the experimental values of density, viscosity, and ultrasonic velocity, the excess molar volumes (VE), deviations in viscosity (Δη), and deviations in isentropic compressibility (Δκs) have been calculated. The excess molar volumes, deviations in viscosity and deviations in isentropic compressibility have been fitted to the Redlich-Kister polynomial equation. The Jouyban-Acree model is used to correlate the experimental values of density, viscosity, and ultrasonic velocity. 相似文献
16.
Jaime W. Morales Héctor R. Galleguillos María E. Taboada Felipe Hernández-Luis 《Fluid Phase Equilibria》2009
The electromotive force of the cell containing two ion-selective electrodes (ISE),
相似文献
Na-ISE|NaCl (m), PEG ??4000 (Y), H2O (100−Y)|Cl-ISE
17.
Jaime Wisniak Gladis Cortez Ramiro Infante Tláloc A. Amaro Homero Soto 《The Journal of chemical thermodynamics》2008,40(12):1671-1683
Densities of the binary systems of dimethyl carbonate with butyl methacrylate, allyl methacrylate, styrene, and vinyl acetate have been measured as a function of the composition at (293.15, 303.15, and 313.15) K at atmospheric pressure, using an Anton Paar DMA 5000 oscillating U-tube densimeter. The excess molar volumes are negative for the (dimethyl carbonate + vinyl acetate) system and positive for the three other binaries, and become more so as the temperature increases from (293.15 to 313.15) K. The apparent volumes were used to calculate the values of the partial excess molar volumes at infinite dilution. The excess coefficient of thermal expansion is positive for the four binary systems. The calculated excess molar volumes were correlated with the Redlich-Kister equation and with a series of Legendre polynomials. An explanation of the results is offered based on the FT-IR (ATR) spectra of several mixtures of the different systems. 相似文献
18.
A commercial flow-mixing isothermal calorimeter was tested by measuring heat of mixing curves for exothermic, endothermic, S-shaped and double minimum molar excess enthalpy mixtures at high pressure. The results show this calorimeter is able to produce good quality data. Molar excess enthalpies for ethyl acetate mixed with a series of simple alkanols were measured at T = 298.15 K and p = 10 MPa. 相似文献
19.
Densities have been measured for the electrolyte (NaCl, NaBr and NaI)‐monosaccharide (D ‐mannose and D‐ribose)‐water solutions at 298.15 K. These data have been used to calculate the apparent molar volumes of the saccharides (VΦ,S) and electrolytes (VΦ,E) in the studied solutions. Infinite dilution apparent molar volumes, VΦ,S0 and VΦ,E0, have been evaluated, together with the standard transfer volumes of the saccharides (ΔtVS0) from water to aqueous electrolyte solutions and those of the electrolytes (ΔtVE0) from water to aqueous saccharide solutions. It was shown that both the ΔtVS0 and ΔtVE0 values are positive and increase with increasing molalities of sodium halides and saccharides, respectively. Overall, the ΔtVS0 and ΔtVE0 values have the order of NaCl > NaBr > NaI except for NaI‐ribose and NaI‐ribose. Volumetric interaction parameters for the electrolyte‐monosaccharide pairs in water were obtained and interpreted by the stereochemistry of the monosaccharide molecules and the structural interaction model. 相似文献
20.
Vapour–liquid equilibria and densities for the ternary system chloroform + tetrahydrofuran + cyclohexane and for the binary mixtures containing chloroform have been determined at 298.15 K. Vapour–liquid equilibrium data have been collected by head-space gas-chromatographic analysis of the vapour phase directly withdrawn from an equilibration apparatus. Density measurements have been carried out by means of a vibrating tube densimeter. Molar excess Gibbs energies GE and volumes VE, as well as activity coefficients and apparent molar volumes of the components, have been obtained from the measured quantities and discussed. The binary chloroform + tetrahydrofuran displays negative deviations from ideality, while chloroform + cyclohexane positive deviations, for both volume and Gibbs energy. The GE's and VE's for the ternary system are positive in the region rich in cyclohexane while negative in the region rich in chloroform + tetrahydrofuran. This indicates that hydrogen bonding between chloroform and tetrahydrofuran molecules produces negative values of GE and VE and strongly influences the behaviour of the ternary system. 相似文献