首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
本文研究了以磺化煤油为稀释剂,N,N,N'',N''-四(2-乙基己基)-3-氧戊二酰胺(T2EHDGA)从硝酸中对U(Ⅵ)的萃取性能。考察了HNO3浓度、T2EHDGA浓度、盐析剂浓度及温度对萃取性能的影响。该萃取过程为一放热过程,在所研究的条件下没有三相的形成。给出了萃取机理,确定由2个萃取剂分子参与U(Ⅵ)配位,其萃合物组成为UO2(NO3)2·2T2EHDGA。通过红外光谱确定了由羰基及醚氧键参与配位。  相似文献   

2.
研究新型萃取剂从硝酸盐介质中萃取分离稀土元素对于后处理工艺具有重要意义。本文报道以甲苯为稀释剂,N,N,N′,N′-四丁基丙二酰胺(TBMA)从硝酸盐介质中萃取铈(Ⅲ)、镝(Ⅲ)、铒(Ⅲ)、镨(Ⅲ)、钐(Ⅲ)、铽(Ⅲ)、铥(Ⅲ)、镱(Ⅲ)的机理。考察了硝酸浓度、TBMA浓度、盐析剂浓度以及温度对上述三价镧系离子分配比的影响。得出萃合物的组成主要是三配体配合物M(NO3)3·3TBMA;计算出萃取反应的条件平衡常数、萃取平衡常数。温度效应研究表明萃取反应主要是焓驱动的。对萃取分离系数以及TBMA萃取三价镧系离子的规律进行了初步研究。  相似文献   

3.
合成了N,N-二丁基辛酰胺(简称DBOA)。以甲苯为稀释剂研究了DBOA萃取硝酸的平衡,认为低酸度下形成HNO3·DBOA,得到萃取平衡常数为0.2 mol-2·L2;研究了水相酸度和萃取剂浓度对DBOA萃取硝酸铀酰平衡的影响,得到萃合物组成UO2(NO3)2·(DBOA)2,25℃下萃取平衡常数为4.93 mol-4·L4;利用红外光谱分析并确定了萃合物的结构;考察温度对萃取平衡的影响,得到萃取反应热为-29.1 kJ·mol-1。实验结果表明相同条件下DBOA萃取Th4+、 Fe3+的能力很弱,UO2+2能与之有效地分离,表明DBOA在钍-铀分离方面具有应用前景。  相似文献   

4.
采用密度泛函理论的B3P86/6-31G**方法, 优化了β-HMX及其与H+、NH+4分别形成的复合物的稳定结构, 计算了β-HMX以及复合物中最弱的N—NO2键解离能. 结果发现, HMX与H+、NH+4形成复合物后, 使HMX的构型产生较大变化; 与H+结合后, HMX的一个N—NO2键显著伸长, 键级变小; 但与NH+4形成复合物后, HMX中键级最小的N—NO2键长变化不大. 键解离能计算表明, 同β-HMX相比, 与H+形成的两种复合物中N—NO2键解离能分别降低了近20 和82 kJ·mol-1, 而HMX与NH+4形成的复合物中N—NO2键解离能仅降低了约8 kJ·mol-1, 表明H+对β-HMX的N—NO2键的初始热裂解反应有促进作用, 而NH+4影响不明显.  相似文献   

5.
3,6-二(3-甲吡啶-2)-s-四嗪(DMPTZ,Ⅱ)和Ce(NO3)3.6H2O反应生成了一个新的配体L: N-(3-甲吡啶-2)-亚胺甲基-1-(3-甲吡啶-2)腙和一个新的单核配合物[Ce(L)(NO3)2(H2O)3].NO3 (Ⅲ). 用IR和X单晶衍射对化合物Ⅲ的单晶进行了分析. 该晶体属三斜晶系, 空间群为P-1, a = 7.133(4), b = 11.139(2), c = 14.572(3)Å, α= 102.13(2), β=99.81(3), γ=91.10(3), Z = 2, V = 1113.6(7) nm3, μ=2.123 mm-1, F(000)=630. 结果表明, 中心原子Ce3+具有十配位, 其中配体L是三齿配, 提供了三个配位N原子, 且Ce与三个配位N原子在同一平面; 在平面骨架的上方有三分子的H2O参与配位, 提供了三个配位O原子; 在下方有两个NO3-参与配位, NO3-是双齿配位, 提供了四个配位O原子, 且这四个O原子不在同一个平面上. 对DMPTZ在Ce(Ⅲ)的条件下的分解机理进行了简要的讨论.  相似文献   

6.
本文用两相滴定法研究了1-苯基-3-甲基-4-苯甲酰基-5-吡唑酮(PMBP,简写为HA)与甲基膦酸二(1-甲基庚基)脂(P350,简写为B)对Pb2+、Cd2+和Cu2+离子在不同的有机溶剂中的萃取机理.确定了萃合物的组成分别为:MA2(M=Pb2+、Ca2+、Cu2+);MA2·HA(M=Cd2+);MA2·B(M=Pb2+、Cd2+)和MA2·2B(M=Cd2+),同时求得了相应的萃合常数β值.  相似文献   

7.
N, N, N′, N′-四丁基丙二酰胺萃取Pr3+的研究   总被引:2,自引:0,他引:2  
利用丙二酸二乙酯与二正丁胺反应高收率的制备了N,N,N′,N′-四丁基丙二酰胺(TBMA)萃取剂。研究了硝酸浓度、硝酸锂浓度、萃取剂浓度以及温度等对萃取Pr(Ⅲ)分配比的影响,确定了萃合物的组成,得到了不同稀释剂中萃取反应的热力学数据。结合红外光谱和摩尔电导数据初步推断了萃合物的结构。  相似文献   

8.
N,N,N',N'-四丁基丙二酰胺萃取铀(VI)的机理   总被引:3,自引:0,他引:3  
研究了N,N,N’,N’-四丁基丙二酰胺(TBMA)以甲苯为稀释剂,从硝酸介质中萃取硝酸和铀(Ⅵ)的机理。在该萃取体系中,TBMA和 HNO_3形成 TBMA· HNO_3,和 U(Ⅵ)形成为 UO_2(NO_3)_2· 3TNMA。借助红外光谱分析,确定了在萃合物中NO_3~-不参与UO_2~(2+)的直接配位,并对萃合物中配体的配位方式进行了讨论。  相似文献   

9.
本文研究了以磺化煤油为稀释剂,N,N,N′,N′-四(2-乙基己基)-3-氧戊二酰胺(T2EHDGA)从硝酸中对U(Ⅵ)的萃取性能。考察了HNO_3浓度、T2EHDGA浓度、盐析剂浓度及温度对萃取性能的影响。该萃取过程为一放热过程,在所研究的条件下没有三相的形成。给出了萃取机理,确定由2个萃取剂分子参与U(Ⅵ)配位,其萃合物组成为UO_2(NO_3)_2·2T2EHDGA。通过红外光谱确定了由羰基及醚氧键参与配位。  相似文献   

10.
利用激光闪光光解瞬态吸收光谱及气相色谱-质谱联用(GC-MS)技术分别对HNO2与联苯水溶液经紫外光照射后发生的交叉反应的机理及最终产物进行了研究. 结果表明, HNO2受355 nm紫外光激发产生的•OH能够快速加合至联苯的苯环上形成Bp-OH加合物, 其二级反应速率常数为9.5×109 L·mol-1·s-1. 从动力学角度验证该加合物能够与H+发生反应, 亦可被HNO2氧化为亚硝基联苯酚. 故大气水体中的HNO2与联苯在紫外光照射下发生的交叉反应可能是环境中硝基化合物的来源之一.  相似文献   

11.
研究新型萃取剂从硝酸盐介质中萃取分离稀土元素对于后处理工艺具有重要意义.本文报道以甲苯为稀释剂,N,N,N',N'-四丁基丙二酰胺(TBMA)从硝酸盐介质中萃取铈(Ⅲ)、镝(Ⅲ)、铒(Ⅲ)、镨(Ⅲ)、钐(Ⅲ)、铽(Ⅲ)、铥(Ⅲ)、镱(Ⅲ)的机理.考察了硝酸浓度、TBMA浓度、盐析剂浓度以及温度对上述三价镧系离子分配比的影响.得出萃合物的组成主要是三配体配合物M(NO3)3·3TBMA;计算出萃取反应的条件平衡常数、萃取平衡常数.温度效应研究表明萃取反应主要是焓驱动的.对萃取分离系数以及TBMA萃取三价镧系离子的规律进行了初步研究.  相似文献   

12.
本文合成了两个新型双核配合物,[Cu(samcn)Ni(L)2]和[Cu(sampn)Ni(L)2].samcn4-,sampn4-及L分别表示N,N′-乙二水杨酰胺根阴离子,N,N′-1,2-丙二水杨酰胺根阴离子和5-硝基-1,10-菲绕啉(NO2-phcn).经元素分析,IR和电子光谱等方法已推定配合物具有酚氧桥结构和Cu(Ⅱ)及Ni(Ⅱ)的配位环境分别为平面四方及八面体构型.配合物的变温磁化率已测(4-300K),其数值已用最佳拟合方法和从自旋哈密顿算符,H=-2JS1·S2导出的磁方程拟合,求得交换参数为J=-1.77cm-1(samcn)和J=-1.74cm-1(sampn),表明两个Cu(Ⅱ)-Ni(Ⅱ)双核配合物中有很弱的反铁磁性自旋交换相互作用.  相似文献   

13.
在碱性环境下,以包含苯甲酸及Mn(NO3)2的反应体系合成了2个苯甲酸六核锰的簇合物,并对[Et4N]2[Mn6(PhCOO)14]进行了结构表征.它以六核Mn为基本结构单元,一维无限延伸形成链状簇合物.Mn原子通过不同形式配位的羧氧桥联系在一起,形成类似正弦曲线的排列.并将它及类似化合物的结构参数与PSⅡ系统放氧中心锰簇的EXAFS测定结果进行比较,支持了该生物活性中心Mn的周边包含羧氧桥的可能性,提出羧氧桥与Mn的可能连接方式.核磁共振研究观察到Mn中心引起的顺磁加宽与位移.红外谱观察到羧基对Mn的配位引起的吸收红移,支持了晶体结构研究的结果.  相似文献   

14.
利用FTIR-ATR(傅里叶变换红外-衰减全反射)原位光谱技术在分子水平上研究了ZnSe基底上Mg(NO3)2气溶胶颗粒的潮解和风化过程. 根据FTIR-ATR光谱的演变可知, Mg(NO3)2气溶胶在潮解过程中经历了复杂的相变: 相对湿度(relative humidity, RH)接近3%时, Mg(NO3)2气溶胶颗粒为无定型水合物; 稍微升高相对湿度, 无定型颗粒转化为Mg(NO3)2·nH2O(n≤5)晶体, 并且在其表面逐渐形成热力学稳定的Mg(NO3)2·6H2O晶体; 相对湿度达到Mg(NO3)2·6H2O的饱和点(53% RH)时, Mg(NO3)2·6H2O开始溶解, 同时, 内核Mg(NO3)2·nH2O(n≤5)晶体在其表面持续转化为Mg(NO3)2·6H2O晶体, 导致固态气溶胶颗粒全部潮解时的相对湿度延迟到76%. 风化过程中, Mg(NO3)2液滴随相对湿度的降低逐渐失水进入过饱和区域; 相对湿度降至5%以下时, 形成无定形颗粒. 在过饱和Mg(NO3)2液滴的FTIR-ATR光谱中, NO3-对称伸缩振动(v1- NO3-)的吸收强度明显增加, 是溶剂共享离子对, 甚至接触离子对持续形成的结果.  相似文献   

15.
合成了硫氰酸合希土酸四丁基季铵盐配合物,测定了它们的远红外光谱及部分配合物的中红外光谱,结果表明,配合物中的NCS-是以氮原子与Ln3+配位。用X射线单晶衍射法测定了[(n-C4H9)4N]3Nd(NCS)6晶体的结构,结果表明,该晶体属单斜晶系,Cc空间群,晶胞参数为:a=25.188(8)Å,b=13.320(6)Å,c=25.322(8)Å,β=121.30(2)°,晶胞体积V=7258.9Å3,每一晶胞中有四个配合物分子,中心离子Nd3+与六个来自NCS-的氮原子配位,这六个氮位于配位正八面体的六个顶角上,构成配阴离子Nd(NCS)63-,它与三个[(n-C4H9)4N]+以静电引力结合成中心分子,所以晶体为离子型晶体。  相似文献   

16.
在不同稀释剂体系中研究了N,N,N′,N′-四丁基-3-氧戊二酰胺(TBDGA)从硝酸介质中萃取Gd髥离子的性能及反应机理。考察了水相硝酸浓度、萃取剂浓度及温度对其萃取性能的影响。实验表明在不同稀释剂中TBDGA对Gd髥的萃取能力为:二甲苯四氯化碳甲苯氯仿,分配比在所研究酸度范围内都随硝酸浓度的增加而增大。在不同稀释剂中萃取机理是相同的,萃合物的组成为Gd(NO3)3·3TBDGA;萃取Gd(Ⅲ)离子的反应为放热反应,低温有利于萃取。萃合物的IR光谱表明羰基氧与Gd(Ⅲ)发生配位。  相似文献   

17.
合成若干五齿Schiff碱配体与Fe(Ⅲ)的配合物,以红外光谱、紫外一可见光谱、1H核磁共振以及Mössbauer谱等手段研究其性质。结果表明,Schiff碱与Fe(Ⅲ)配位后,NO3-以单齿形式与铁键合,所有配合物呈高自旋态,未观察到强反铁磁性偶合。  相似文献   

18.
以N,N′-乙二水杨酰胺合镍酸钠同二价金属离子和2,2-联吡啶(bpy)或1,10菲绕啉(phen)反应制得双核配合物,[Ni(samen)Cu(L)]和[Ni(samen)Ni(L)2](L=bpy,phen).经元素分析。红外、电子光谱等方法已推定[Ni(samen)]2-中的Ni(Ⅱ)的配位环境为平面四方型,而被bpy或phen配位的Cu(Ⅱ)和Ni(Ⅱ),分别为平面四方型和畸变八面体构型。 据此,本文指派了配合物的电子光谱,评价了Dq,B,β等配位场参数,并且用配位场理论模型算出了有效磁矩,Ni(Ⅱ)-Cu(Ⅱ)配合物的g11,与g1,结果理论值与实验值相当吻合。  相似文献   

19.
本文利用高压法制备HFe2Co(CO)93-S),作为原料,经脱质子化作用,再分别与(PPh3)2Cu(NO3)和PPh3AuCl反应,将Ph3Cu-或Ph3Au-联接到原始簇合物的中心骨架上,使簇核扩大,得到了组成为(PPh3)2CuFe2Co(CO)83-S)和(PPh3)3AuFe2Co(CO)73-S)的化合物.文中对此两个新化合物进行了IR,UV,1H和31P NMR.元素分析、熔点测定等性质表征,并对(PPh3)2CuFe2Co(CO)73-S)进行了单晶X-射线衍射分析.两个化合物具有类似的中心骨架,在Fe2和Co原子三角形的上面和下面分别键联着Cu和S,或Au和S原子,构成了三角双锥结构.其中一个簇合物由二个三苯基膦和八个羰基配位,另一个则由三个三苯基膦和七个羰基配位.  相似文献   

20.
N,N-二丁基癸酰胺萃取硝酸有机相结构研究   总被引:1,自引:0,他引:1  
利用界面张力、电导、FT-IR等研究了不同硝酸浓度下萃取有机相的微结构。利用Gaussian曲线拟合处理N,N-二丁基癸酰胺(DBDEA)的羰基吸收峰,结果表明体系中存在多种以氢键结合的物种如DBDEA·HNO3、(DBDEA)2·HNO3等。在较高酸度下有机相中萃取剂分子自组装成小的聚集体-反相胶团,极性核由水、硝酸和萃取剂高电荷密度的极性部分构成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号