首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[C3N2H5]6[Bi4Br18] has been synthesized and characterized by the X-ray (at 293 and 110 K), calorimetric, dilatometric and dielectric measurements. At room temperature it crystallizes in the monoclinic space group, C2/m. A crystal structure consists of disordered imidazolium cations and ordered discrete tetramers of [Bi4Br18]6-. This compound reveals a rich polymorphism in a solid state. It undergoes three solid–solid phase transitions: from phase I to II at 426/423 K (heating–cooling), II→III at 227 K and III→IV at 219.5/219 K. A clear dielectric relaxation process is found in the room temperature phase II. Infrared studies of the polycrystalline [C3N2H5]6[Bi4Br18] showed that the ν(N–H), δ(ring) and δ(C–H) modes of the imidazolium cations appeared to be very sensitive to the IV→III phase transition. 1H NMR measurements confirmed a key role of the imidazolium cations in the phase transitions mechanisms at low temperatures.  相似文献   

2.
Summary The compound [Re(CO)3(PPh3)2Cl] reacts with the lithium salt of thiazole derivatives (L1H = 2-amino-benzothiazole, L2H = 2–N-methyl-aminothiazole, L3H = 2–N-phenylaminothiazole, L4H = 2–N-(4-methoxyphenyl)aminothiazole, L5H = 2–N(4-nitrophenyl)aminothiazole) to give [Re(CO)2-(PPh3)2(L)]. The compounds have been characterized by elemental analysis, i.r. and1H n.m.r. spectra. At room temperature [Re(CO)2(PPh3)(L2)] reacts with L6H (L6H = diphenylacetic acid), to give the carboxylato complex [Re(CO)2 .The crystal structures of [Re(CO)2(PPh3)2(L2)] (2) and [Re(CO)2(PPh3)2(L6)] (6) were determined by x-ray crystallography. [Re(CO)2(PPh3)2(L2)] crystallizes in the monoclinic space group P21/m witha = 9.16(1),b= 24.82(2),c =9.12(1) Å, and = 115.81(4)°; Dc = 1.56 g cm–3for Z = 2.The structure was refined to a final R of 6.4%. The molecules have Cs symmetry. The rhenium atom is six-coordinate with approximately octahedral geometry. The anionic ligand is chelating through the nitrogen atoms and is strictly planar allowing delocalization of the -electron density. [Re(CO)2(PPh3)2(L6)] (6) crystallizes in the monoclinic space group P21/n witha = 22.203(5),b = 18.651(5),c =10.653(3) Å, = 91.08(3)°, Dc = 1.47 g cm–3 for Z = 4. The structure was refined to a final R of 4.7%. The complex is monomeric and the rhenium atom is distorted octahedral with two mutuallytrans PPh3 ligands, twocis CO ligands and one chelating Ph2CHCO 2 ion.  相似文献   

3.
Some new ligand exchange reactions of [Co(diph·H)2Cl(H2O)] and [Co(diph·H)2(SO3)(H2O)] complexes with N3 , S2O3 2– and with aromatic and heterocyclic amines were carried out. A series of derivatives of the types [Co(diph·H)2(SO3)X] n– (X=N3 , S2O3 2– oramine) and [Co(diph·H)2(S2O3)2]3– were described and characterized. Some structural problems are resolved and discussed on the basis of UV and IR spectral data.  相似文献   

4.
New Oxonium Bromochalcogenates(IV) — Synthesis, Structure, and Properties of [H3O][TeBr5] · 3 C4H8O2 and [H3O]2[SeBr6] Dark red crystals of the composition [H3O][TeBr5] · 3 C4H8O2 ( 1 ) were isolated from a saturated solution of TeBr4 in 1,4-dioxane containing a small amount of water. In this compound (space group P21/m, a = 8.922(4) Å, b = 13.204(7) Å, c = 9.853(5) Å, β = 91.82(4)° at 150 K) a square pyramidal [TeBr5]? anion has been isolated for the first time. The coordination sphere of the anion is completed to a distorted octahedron by weak interaction with a dioxane molecule of the cationic system. The [H3O]+ cations are connected to chains by dioxane molecules. At room temperature the compound is stable only in its mother liquor. Crystalline [H3O]2[SeBr6] ( 2 ) (space group Fm3m, a = 10.421(1) Å at 170 K) is a bromoselenous acid of high symmetry. The [H3O]+ ion is only weakly coordinated by Br atoms of the anion. The anions are isolated octahedral [SeBr6]2? units. The structure is isotypic to the K2[PtCl6] structure. Despite being a halogenochalcogen(IV) acid, 2 exhibits a remarkable thermal stability. Both oxonium compounds were characterized by single-crystal X-ray structure analyses. Vibrational spectra of 2 are reported.  相似文献   

5.
Cyclopalladation of mono-, di- and tribenzylamine has been investigated by reacting the corresponding amines with an equimolar amount of palladium(II) acetate (reaction i), or by heating the corresponding bis-amine complexes [Pd(O2CMe)2{(PhCH2)nNH3−n}2] (n=1, 2) (reaction ii). By the reaction i, all the three amines undergo cyclopalladation. However, in the case of the reaction ii, only the dibenzylamine complex [Pd(O2CMe)2{(PhCH2)2NH}2] has been converted into a cyclopalladated complex. The reactivity of the three benzylamines towards cyclopalladation has been discussed in terms of the co-ordinating ability influenced by the bulkiness around the nitrogen atom. Temperature-dependent 1H-NMR spectra are observed for mononuclear cyclopalladated complexes [Pd(O2CMe){C6H4CH2N(CH2Ph)2C1N}L] (L=PPh3, AsPh3) and are attributed to the dissociation of the nitrogen atom in the cyclopalladated chelate ring. A heteroleptic bis-cyclopalladated complex [Pd[C6H4CH2N(CH2Ph)2C1N](C6H4CH2NMe2C1N)] has also been prepared. X-ray crystallographic studies on [{Pd(O2CMe)[C6H4CH2N(CH2Ph)2C1N]}2] and [Pd[C6H4CH2N(CH2Ph)2C1N](C6H4CH2NMe2C1N)] have been reported.  相似文献   

6.
Two new unsymmetrical binucleating ligands, 2-[bis(3-N, N-dimethylaminopropyl)-aminomethyl]-6-[prolin-1-yl)methyl]-4-bromophenol [H 2L1] and 2-[bis(3-N, N -dimethylaminopropyl)aminomethyl]-6-[prolin-1-yl)methyl]-4-methylphenol [H2L2], and their dicopper(II) complexes with different exogenous bridging motifs (OAc, Br and Cl) have been prepared and characterized by spectral, electrochemical, magnetic and e.p.r. studies. Electrochemical studies indicate the presence of two irreversible reduction peaks in the cathodic region. Variable temperature magnetic susceptibility studies of the complexes show that the extent of antiferromagnetic coupling increases in the order: OAc< Cl< Br. Broad isotropic or axial symmetric spectral features are observed in powder e.p.r. spectra of the complexes at 77K. A comparison of the electrochemical and magnetic behaviour of the complexes derived from the ligands is discussed on the basis of an exogenous bridge as well as the substituent at the para position of the phenolic ring.  相似文献   

7.
The reaction of 1-alkyl-2-{(o-thioalkyl)phenylazo}imidazoles (SRaaiNR) (2a/2b) with Ru(II) has synthesized [Ru(SRaaiNR)2](ClO4)2 (3a/3b) in 2-methoxyethanol. The reaction in methanol, however, has synthesized [Ru(SRaaiNR)(SRaaiNR)Cl](ClO4) (4a/4b). The solid phase reaction of SRaaiNR and RuCl3 on silica gel surface upon microwave irradiation has synthesized [Ru(SRaaiNR)(SaaiNR)](PF6) (5a/5b) [SRaaiNR represents tridentate N,N′,S-chelator; SRaaiNR is N,N′-bidentate chelator where S does not coordinate and SaaiNR refers N,N′,S-chelator where S refers to thiolato binding]. The structural characterization of [Ru(SEtaaiNEt)(SEtaaiNEt)Cl](ClO4) (4b) and [Ru(SEtaaiNEt)(SaaiNEt)](PF6) (5b) has been confirmed by single crystal X-ray diffraction study. The IR, UV–Vis, and 1H NMR spectral data also support the stereochemistry of the complexes. The complexes show metal oxidation, Ru(III)/Ru(II), and ligand reductions (azo/azo, azo/azo). The molecular orbital diagram has been drawn by density functional theory (DFT) calculation. Normal mode of analysis has been performed to correlate calculated and experimental frequencies of representative complexes. The electronic movement and assignment of electronic spectra have been carried out by TDDFT calculation both in gas and acetonitrile phase.  相似文献   

8.
The aprotic and protic bi- and multidentate iminophosphines 2-Ph2PC6H4N=CR1R2 (R1=H, R2=Ph=2a; R1=Me R2=Ph=2b; R1=H, R2=2-thienyl=2c; R1=H, R2=C6H4-2-PPh2=2d; R1=H, R2=C6H4-2-OH=2e, R1=H, R2=C6H4-2-OH-3-But=2f; R1=H, R2=CH2C(O)Me=2g) have been prepared by the acid catalyzed condensation of 2-(diphenylphosphino)aniline with the corresponding aldehyde–ketone. Iminophosphine 2d can be reduced with sodium cyanoborohydride to give the corresponding amino-diphosphine 2-Ph2PC6H4N(H)CH2C6H4-2-PPh2 (2h). In the presence of a stoichiometric quantity of acid, 2-(diphenylphosphino)aniline reacts in an unexpected manner with benzaldehyde, salicylaldehyde, or acetophenone to give the corresponding 2,3-dihydro-1H-benzo[1,3]azaphosphol-3-ium salts and with pyridine-2-carboxaldehyde to give N-(pyridin-2-ylmethyl)-2-diphenylphosphinoylaniline, the latter of which has been characterized by single-crystal X-ray crystallography, as its palladium dichloride derivative. The attempted condensation of 2-(diphenylphosphino)aniline with pyridine-2-carboxaldehyde to give the corresponding pyridine-functionalized iminophosphine resulted in an unusual transformation involving the diastereoselective addition of two equivalents of aldehyde to give 1,2-dipyridin-2-yl-2-(o-diphenylphosphinoyl)phenylamino-ethanol, which has been characterized by a single-crystal X-ray structure determination. The bidentate iminophosphine 2-Ph2PC6H4N=C(H)Ph reacts with [(cycloocta-1,5-diene)PdClX] X=Cl, Me) to give [Pd{2-Ph2PC6H4N=C(H)Ph}ClX] and the imino-diphosphine 2-Ph2PC6H4N=C(H)C6H4-PPh2 reacts with [(cycloocta-1,5-diene)PdClMe] to give [Pd{2-Ph2PC6H4N=C(H)C6H4---PPh2}ClMe] and each has been characterized by single-crystal X-ray crystallography. The monobasic iminophosphine 2-Ph2PC6H4N=C(Me)CH2C(O)Me reacts with [Ni(PPh3)2Cl2] in the presence of NaH to give the phosphino–ketoiminate complex [Ni{2-Ph2PC6H4N=C(Me)CHC(O)Me}Cl], which has been structurally characterized. Mixtures of iminophosphines 2ah and a palladium source catalyze the Suzuki cross coupling of 4-bromoacetophenone with phenyl boronic acid. The efficiency of these catalysts show a marked dependence on the palladium source, catalysts formed from [Pd2(OAc)6] giving consistently higher conversions than those formed from [Pd2(dba)3] and [PdCl2(MeCN)2]. Catalysts formed from neutral bi- and terdentate iminophosphines 2ad gave significantly higher conversions than those formed from their monobasic counterparts 2ef. Notably, under our conditions the conversions obtained with 2ac compare favorably with those of the standards; catalysts formed from tris(2-tolyl)phosphine and tris(2,4-di-tert-butylphenyl)phosphite and a source of palladium. In addition, mixtures of [Ir(COD)Cl]2 and 2ah are active for the hydrosilylation of acetophenone; in this case catalysts formed from monobasic iminophosphines 2ef giving the highest conversions.  相似文献   

9.
Summary New cobalt(III) complexes of general formula [Co(AA)(bigH)2 ]X3 and [Co(amidinourea)(MAUH)2 ]X3 where AA = amidinourea,N-phenylsalicylideneimine, bigH = biguanide, MAUH =O-methyl-l-amidinourea, X = 0.5 [SO4]2–, CI, Br or 0.33 [Co(NO2)6 ]3– have been synthesized and characterized. Conductance measurements (aqueous solution) show [Co(amidinourea)(bigH)2]Cl3 and [Co(N-phem,lsalicylideneimine)(bigH)2]CI3 to be triunivalent.Author to whom correspondence should be addressed.  相似文献   

10.
Zusammenfassung Auf Grund spektrophotometrischer und konduktometrischer Messungen wurden folgende Koordinationsformen des Eisen(III)-ions mit Azid-, Rhodanid-, Cyanid- und Fluoridionen in Dimethylsulfoxid festgestellt: [Fe(N3)4], [Fe(SCN)6]3–, [Fe(CN)2]+, Fe(CN)3, [Fe(CN)4], [FeF2]+, [FeF4].
By means of spectrophotometric and conductometric measurements the following coordination forms of iron(III) with azide-, thiocyanate-, cyanide- and fluoride ions were found in dimethyl sulfoxide: [Fe(N3)4], [Fe(SCN)6]3–, [Fe(CN)2]+, Fe(CN)3, [Fe(CN)4], [FeF2]+, [FeF4].


Mit 4 Abbildungen  相似文献   

11.
The atomic structure of ((C2H5)4N)2TeBr6 crystals (a = 17.930(8) Å, b = 11.133(5) Å, c = 15.022(7) Å, β = 109.28(9)°, space group C2/c, Z = 4, ρcalcd = 2.036 g/cm3) has been studied by X-ray diffraction. The ((C2H5)4N)2TeBr6 crystal structure consists of isolated [TeBr6]2? anions and ((C2H5)4N)+ cations. The electronic and geometric aspects that influence the luminescence and thermochromic properties of the complex have been considered.  相似文献   

12.
The novel 18-metallacrown-6 complex, with the formula of [Mn6(C11H11N2O3)6(CH3CH2OH)6]·3C3H7NO·2CH3CH2OH (1) (pmshz = N-propanoyl-3-methyl-salicylhydrazide), has been prepared and characterized. The self-assembled, manganese complex assumes a nearly planar cyclic structure with an [Mn–N–N]6 backbone. Due to the coordination, the ligand enforces the stereochemistry of the Mn3+ ions as a propeller shape with alternating …ΔΛΔΛ… configurations. The magnetic properties of the metallacrown molecule are characterized by a weak antiferromagnetic exchange interaction between the Mn3+ ion spins with S = 2 in the cyclic system.  相似文献   

13.
Summary The kinetics and mechanism of the system [FeHIDA-(OH)2]+5CN[Fe(CN)5OH+HIDA2–+OH (HIDA=N-(2-hydroxyethyl) (iminodiacetate) at pH=9.5±0.02, I=0.1 M and at 25±0.1°C have been studied spectrophotometrically at 395 nm ( max of [Fe(CN)5OH]3–]. The reaction has three distinguishable stages; the first is formation of [Fe(CN)5OH]3–, the second is conversion of [Fe(CN)5OH]3– into [Fe(CN)6]3–, and last is the reduction of [Fe(CN)6]3– to [Fe(CN)6]4– by the HIDA2– released in the first stage. The first stage shows variable-order dependence on cyanide concentration, unity at high cyanide concentration and zero at low cyanide concentration. The second stage exhibits first-order dependence on the concentration of [Fe(CN)5OH]3– as well as on cyanide. The reverse reaction between [Fe(CN)5OH]3– and HIDA2– is first-order in each of these species and inverse first-order in cyanide. On the basis of forward and reverse rate studies, a five-step mechanism has been proposed for the first stage. The first step involves a slow loss of one OH, by a cyanide-independent path.  相似文献   

14.
Two new phenol based macroacyclic Schiff base ligands, 2,6-bis({N-[2-(phenylselenato)ethyl]}benzimidoyl)-4-methylphenol (bpebmpH, 1) and 2,6-bis({N-[3-(phenylselenato)propyl]}benzimidoyl)-4-methylphenol (bppbmpH, 2) of the Se2N2O type have been prepared by the condensation of 4-methyl-2,6-dibenzoylphenol (mdbpH) with the appropriate (for specific reactions) phenylselenato(alkyl)amine. These ligands with Cu(II) acetate monohydrate in a 2:1 molar ratio in methanol form complexes of the composition [(C6H2(O)(CH3){(C6H5)CN(CH2)nSe(C6H5)}{(C6H5)CO}2Cu] (3 (n = 2), 4 (n = 3)) with the loss of phenylselenato(alkyl)amine and acetic acid. In both these complexes, one arm of the ligand molecule undergoes hydrolysis, and links with Cu(II) in a bidentate (NO) fashion, as confirmed by single crystal X-ray crystallography of complex 3. The selenium atoms do not form part of the copper(II) distorted square planar coordination sphere which has a trans-CuN2O2 core. The average Cu–N and Cu–O distances are, respectively, 1.973(3) and 1.898(2) Å. The N–Cu–N and O–Cu–O angles are, respectively, 167.4(11)° and 164.5(12)°. The compounds 1–4 have been characterized by elemental analysis, conductivity measurements, mass spectrometry, IR, electronic, 1H and 77Se{1H} NMR spectroscopy and cyclic voltammetry. The interaction of complex 3 with calf thymus DNA has been investigated by a spectrophotometric method and cyclic voltammetry.  相似文献   

15.
A new bifunctional N-thiophosphorylated thiourea and 2,5-dithiobiurea of the common formula R[C(S)NHP(S)(OiPr)2]2 [R = –N(Ph)CH2CH2N(Ph)– (H2La); –NHNH– (H2Lb)] have been synthesized and characterized by IR, 1H, 31P spectroscopy and the single crystal X-ray diffraction method. The structure of the latter compound in CDCl3 and acetone-d6 solutions has been discussed in comparison with the monofunctional thiosemicarbazide PhNHNHC(S)NHP(S)(OiPr)2 (HLc).  相似文献   

16.
Yuan  Ai-Hua  Lu  Lu-De  Shen  Xiao-Ping  Chen  Li-Zhuang  Yu  Kai-Bei 《Transition Metal Chemistry》2003,28(2):163-167
A cyanide-bridged FeIII–FeII mixed-valence assembly, [FeIII(salen)]2[FeII(CN)5NO] [salen = N,N-ethylenebis(salicylideneiminato)dianion], prepared by slow diffusion of an aqueous solution of Na2[Fe(CN)5NO] · 2H2O and a MeOH solution of [Fe(salen)NO3] in an H tube, has been characterized by X-ray structure analysis, i.r. spectra and magnetic measurements. The product assumes a two-dimensional network structure consisting of pillow-like octanuclear [—FeII—CN—FeIII—NC—]4 units with dimensions: FeII—C = 1.942(7) Å, C—N = 1.139(9) Å, FeIII—N = 2.173(6) Å, FeII—C—N = 178.0(6)°, FeIII—N—C = 163.4(6)°. The FeII—N—O bond angle is linear (180.0°). The variable temperature magnetic susceptibility, measured in the 4.8–300 K range, indicates the presence of a weak intralayer antiferromagnetic interaction and gives an FeIII–FeIII exchange integral of –0.033 cm–1.  相似文献   

17.
Summary Salts of the anions [SnX5], [SnX4Cl, [SnX3Cl2], [SnX3], [PbX3], [SbX4], [SbX3Cl], [SbX2Cl2], [BiX4], [AuCl2], [AuX2], [AuXCl], [AuX4], [Au2X6]2– and [PtX4]2–, where X = C6F5S, have been isolated and characterised. The neutral SbX3 and BiX3 species, have also been isolated and shown to be pyramidal monomers (19F.n.m.r., i.r., and Raman spectral evidence). Various physical properties of the complexes prepared, as well as their stereochemistries (where these could be ascertained), are similar to those of the known corresponding halogeno compounds of these elements. These results further demonstrate the pseudo-halide nature of the pentafluorothiophenoxide ion.Author to whom all correspondence should be directed at: Laboratoire de Chimie de Coordination, Uniyersité Louis Pasteur, 67008 Strasbourg, France.  相似文献   

18.
New germanium(IV) complexes with N-[X-benzoyl]hydrazones of salicylaldehyde (X-H2L, where X = 2-, 3-, and 4-NO2; H2L = C6H4–CO–NH–NCH–C6H4OH) with the compositions [Ge(2-NO2–L)2], [Ge(3-NO2–L)2], and [Ge(4-NO2–L)2] were synthesized. The data of IR, UV, and 1H, 13C NMR spectroscopy showed that the complexes had an octahedral structure and ligand coordination through the nitrogen atom of the azomethine group and two oxygen atoms of the doubly deprotonated form of the ligand. The thermal stability of the complexes was studied. The specific features of the mass spectrometric behavior of the substances in the gas phase under electron impact were considered.  相似文献   

19.
Summary Negative ion mass spectra for 3 aliphatic and 4 aromatic isocyanates have been obtained by low pressure chemical ionization, using CH4, CO2 and N2O as reagent gases. All compounds furnished intense anions at m/z 42. With CH4, quasi-molecular anions were observed at m/z M+1 for aliphatic and m/z M+1 and M–1 for aromatic isocyanates. With N2O, anionic substitution products at m/z M+15 and M+30 were observed, and with CO2 and N2O, peaks at m/z M–12 could be detected for all aromatic isocyanates. Studies with 13CO2 and C18O2 as reagent gases showed that the anions at m/z M–12 and M+15 correspond to [M–CO+O] and [M–H+O], respectively.
Negativionen-Massenspektrometrie mit chemischer Ionisierung von einigen Isocyanaten
Zusammenfassung Die Negativionen-Massenspektren von 3 aliphatischen und 4 aromatischen Isocyanaten wurden mittels chemischer Ionisation bei tiefem Quellendruck aufgenommen, und zwar mit den Reagensgasen CH4, CO4 und N2O. Alle Verbindungen lieferten intensive Anionen mit m/z 42. Mit CH4 erhielten wir die quasi-molekularen Anionen M+1 für aliphatische sowie M+1 und M–1 für aromatische Isocyanate. Das Reagens N2O ergab die anionischen Substitutionsprodukte M+15 und M+30. Sowohl CO2 als auch N2O führten mit aromatischen Isocyanaten zur Bildung von M–12 Anionen. Versuche mit 13CO2 und mit C18O2 als Reagensgase zeigten, daß die Anionen M–12 und M+15 den Ionen [M–CO+O] und [M–H+O] entsprechen.
  相似文献   

20.
Summary A series of cobalt(II), nickel(II) and copper(II) complexes of 2-picolinamineN-oxide, HA, has been prepared. Solids of formula [M(HA)3](BF4)2 (M=cobalt(II) or nickel(II); [Cu(HA)2]X2 (X=BF 4 , NO 3 ); [Co(HA)2X2] (X=Cl or Br); [Ni(HA)2Cl2] and [Cu(HA)X2] (X=Cl or Br] have been isolated and characterized by partial elemental analyses, molar conductivities, magnetic susceptibilities, DSC-TGA, and spectral methods. All complexes were found to be monomeric, and their spectral parameters are compared with those of the metal ion complexes ofN-alkyl-2-picolinamineN-oxides, 2-dialkylaminopyridineN-oxides and 2-picolinamine. The cobalt(II) and nickel(II) halide complexes spectrally show a mixture of octahedral and tetrahedral centres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号