首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe an experimental and semi-quantitative theoretical investigation of the characteristics of two-photon-induced stimulated emission related to diagnostic applications. The laser power dependence, pressure dependence, and the spectral shape of the stimulated emission signal in CO are discussed and compared with those for laser-induced fluorescence. We also discuss decreases in the laser-induced fluorescence signal caused by the stimulated emission process, and propose a method for providing increased spatial resolution in measurements made using stimulated emission detection.This work was supported by the Swedish National Board for Technical Developments, the Swedish Energy Administration, and the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences  相似文献   

2.
Two-photon laser-induced predissociative fluorescence (LIPF) of H2O is examined as a potential measurement technique of H2O concentration and temperature in flames. Two-photons of 248 nm light from a narrowband KrF laser excite H2O to the highly predissociative state in a hydrogen-air flame. The subsequent bound-free emission is observed from 400–500 nm in the flame at temperatures of 1000–2000 K and is found to be free of fluorescence interference from other flame species. This LIPF signal is not affected by collisional quenching due to the short lifetime of the predissociative state (2.5 ps). Broadband laser dispersion spectra, narrowband laser dispersion spectra, laser excitation spectra and probability density functions of the H2O fluorescence are obtained in the hydrogen flame. The H2O LIPF signal is found to be temperature sensitive and a two-line LIPF technique is needed for concentration and temperature measurement. The accuracy of a two-line LIPF technique for H2O concentration and temperature measurement is determined.  相似文献   

3.
4.
This paper presents experimental evidence that using the KrF excimer laser for quantitative laser-induced fluorescence (LIF) studies of the OH A-X (3,0) system is highly problematic if the effects of both photobleaching and photochemistry are not included for laser spectral irradiances greater than 20 MW/cm2 cm-1. Pump-probe and time-resolved measurements of the OH LIF signal in an atmospheric pressure, premixed CH4-air flame at low- and high-laser-spectral-irradiance conditions show that a significant amount of OH is produced from photofragments resulting from the simultaneous 2-photon predissociation of H2O molecules in the C-X system. A 5+2-level rate-equation model that includes the effects of both photobleaching and photochemical OH production is shown to satisfactorily predict the data using a single adjustable parameter given by the effective, spectrally integrated 2-photon cross-section of H2O near 248 nm. The time-integrated OH LIF signal was found to depend on both the laser spectral irradiance and the local concentration of H2O. Additionally, use of the KrF excimer laser for 2-line rotational thermometry can produce temperature errors as great as +550 K at high laser-pulse energies. Received: 21 August 2000 / Revised version: 30 October 2000 / Published online: 21 February 2001  相似文献   

5.
Laser-induced fluorescence of OH (A 2Σ+, v’=1) was measured in hydrogen/oxygen and hydrogen/air/nitrogen flames using laser pulses of 80 psec duration. A 2D signal acquisition scheme simultaneously employed wavelength, temporal, and polarization resolution. The signals emitted in different rotational branches exhibit polarization-dependent intensities, depending on the rotational branch of the absorption line used. It is possible to select experimental conditions such that rotational and vibrational relaxation as well as electronic quenching can be monitored simultaneously. Advantages and limitations of the experimental approach are discussed. Numerical simulations are presented of the LIF spectra affected by energy transfer. Received: 29 March 1999 / Revised version: 14 June 1999 / Published online: 27 October 1999  相似文献   

6.
Methylene, CH2, is a chemically important intermediate in hydrocarbon combustion but has previously eluded optical detection in a combustion environment. The CH2 signal as a function of height above the burner surface in a premixed, laminar, methane/oxygen flame (5.6 Torr and fuel equivalence ratio 1.05) is measured by laser-induced fluorescence (LIF) in the B 1 – ã1 A 1 electronic system. The ã state which lies 3165 cm–1 above the ground state is populated at the high temperatures of the flame (800–1800 K). Although less than one photon for each laser pulse is detected, we can unambiguously attribute the LIF features in the region 450 to 650 nm to CH2 by both scanning the excitation laser and dispersing fluorescence. LIF temperatures and CH and OH LIF concentration profiles are also obtained for the flame. The CH2 radical concentration maximum occurs closer to the burner than that of either OH or CH, as expected from models of methane combustion chemistry.  相似文献   

7.
Nitrogen atoms have been detected in stoichiometric flat premixed H2/O2/N2 flames at 33 and 96 mbar doped with small amounts of NH3, HCN, and (CN)2 using two-photon laser excitation at 211 nm and fluorescence detection around 870 nm. The shape of the fluorescence intensity profiles versus height above the burner surface is markedly different for the different additives. Using measured quenching rate coefficients and calibrating with the aid of known N-atom concentrations in a discharge flow reactor, peak N-atom concentrations in these flames are estimated to be on the order of 1012–5×1013 cm–3; the detection limit is about 1×1011 cm–3.  相似文献   

8.
This report summarizes several recent applications of quantitative laser-induced fluorescence techniques for the determination of species concentrations and temperature in combustion processes. Several lines of further development are discussed.  相似文献   

9.
A systematic study of spectral and time dependence of the luminescence emitted by fragments after ir multiple-photon decomposition of silane, is presented. Data obtained at various silane pressure (1–35 Torr) and pulsed CO2 laser fluences are discussed and compared with previous results and interpretations.  相似文献   

10.
The carbon-isotope selectivity in the multiphoton dissociation of CF3Br is studied in the collisional region of supersonic free jet. The isotopic abundance of12C and13C in C2F6 formed by recombination of the dissociation products is measured with a quadrupole mass spectrometer. An enrichmet factor of 9.4 is obtained for12C with the 9R(30)CO2 laser line while the factor of 6.9 is obtained for13C with the 9P(16) line.  相似文献   

11.
2 H2O2). Laser-induced fluorescence spectra from glyoxal vapor using the same excitation wavelength of 428 nm showed the same strongest lines as the signal from the flame. Glyoxal was visualized in two different modes; two-dimensional imaging and a spatial-spectral mode where spectra were obtained at different spatial positions in the flame simultaneously. For the premixed laminar rich flame it is shown that glyoxal is produced early in the flame, before the signals for C2 and CH appear. For the turbulent non-premixed flames it is shown that glyoxal is produced in a layer on the fuel rich side of the flames. Here the fuel is premixed with ambient air. This layer is thin and has a high spatial resolution. The general trend was that the glyoxal signal appeared in regions with a lower temperature compared with the emission from C2 and CH. The imaging of glyoxal in turbulent acetylene flames is a promising tool for achieving new insight into flame phenomena, as it gives very good structural information on the flame front. Tests so far do not indicate that the detected glyoxal is a result of photo-production. To our knowledge, this is the first detection of glyoxal in flames using laser-induced fluorescence. Received: 19 December 1996/Revised version: 26 May 1997  相似文献   

12.
Laser-induced fluorescence from carbon atoms, excited at the two-photon resonances around 280 nm, has been detected in fuel-rich hydrocarbon flames together with Swan band emission from the C2 radical, which was non-resonantly excited at the same wavelengths. The emission from the C atom and from the C2 molecule exhibited several similarities, indicating a possible common photo-chemical origin.  相似文献   

13.
Received: 7 May 1996/Revised version: 21 October 1996  相似文献   

14.
We have studied the use of wide-band detection in conjunction with saturation of a rovibronic transition of OH within itsA 2 +X 2(0,0) band. For wide-band detection, in which fluorescence is detected from the entire excited rotational manifold, the fluorescence yield is sensitive to collisions in two ways. First, it is sensitive to the ratio of rate coefficients describing rotational energy transfer and electronic quenching; this ratio determines the number of neighboring rotational levels that are populated during the laser pulse. Second, the fluorescence yield can vary with the total collisional rate coefficient; only after a sufficient number of collisions, corresponding to 2.5 ns in an atmospheric flame, does the rotational manifold reach steady state. We also compare measurements employing wide-band (detecting theR 1 andR 2 branches) and narrow-band (detecting a single transition) saturated fluorescence of OH. Over a wide range of conditions — obtained by varying the equivalence ratio, temperature, N2 dilution, and pressure — the wide- and narrow-band fluorescence techniques compare well. Given this good agreement, wide-band saturated fluorescence could be especially useful for analyzing atmospheric flames with XeCl-excimer lasers; one can potentially obtain 2—D images of OH which have a high signal-to-noise ratio and a reduced sensitivity to laser irradiance and quenching.  相似文献   

15.
It has been described earlier that imaging measurements of laser-induced fluorescence (LIF) in flames can be calibrated to number densities with an integrated absorption measurement provided the integrated absorption is small. In this paper a method is presented that extends the technique to flames with substantial absorption, improves the number density determination and allows the experimental parameters to be chosen more freely. The method is based on an iterative computer procedure that reconstructs the 1-D spatially resolved absorption profile from laser measurements of the 1-D spatially resolved LIF and the integrated absorption of the laser beam. The technique is experimentally demonstrated by measurements of OH number densities in atmospheric flames. It is potentially a single-pulse method. Other applications of the iterative procedure are mentioned.  相似文献   

16.
Laser diagnostics of NO reburning in fuel-rich propene flames   总被引:1,自引:0,他引:1  
Absolute NO concentrations were measured by laser-induced fluorescence (LIF) in three different fuel-rich non-sooting propene flames (φ=1.5, 1.8 and 2.3). The experiments were performed in low-pressure premixed propene flames with 0.2%-1% NO added. Laser diagnostics was applied as a tool for investigating reburn chemistry. The Q2(25.5) line in the A-X(0,0) band was excited because of the small temperature dependence of its ground state population. The NO fluorescence lifetimes were measured directly and compared to theoretical values. The initial NO levels are strongly reduced in all three flames. According to modeling results, the HCN mole fraction increases strongly with stoichiometry. As guidelines for laser diagnostics applications in such systems, the modeling results were analyzed with respect to the main reaction channels and reaction partners in fuel-rich flames. Received: 1 March 2000 / Revised version: 20 April 2000 / Published online: 20 September 2000  相似文献   

17.
This study reports on photochemical interferences affecting atomic oxygen detection using two-photon laser-induced fluorescence at 226 nm. In contrast to previous studies in which molecular oxygen was proven to be the relevant photochemical precursor molecule in a hydrogen-fueled flame, the present investigations were carried out in a laminar diffusion flame of methane and air. The most significant interferences were found at the fuel side of the flame in the absence of molecular oxygen, and vibrationally excited carbon dioxide was identified as the most probable precursor molecule for the photochemical production of oxygen atoms. Received: 11 December 2002 / Revised version: 10 March 2003 / Published online: 16 April 2003 RID="*" ID="*"Corresponding author. Fax: +1-925/294-2595, E-mail: tbsette@sandia.gov  相似文献   

18.
jet =18600). Here, PLIF images reveal a CH layer of thickness typically <1 mm from flame base to tip. Furthermore, in these permanently blue flames, we observe instantaneous flamefront strain rates – derived from the PIV data – in excess of ±104 s-1 without flame extinction. Received: 16 October 1997/Revised version: 30 October 1997  相似文献   

19.
Nonresonant laser-induced gratings are created in gases employing the second-harmonic output of a Nd: YAG laser in a degenerate four-wave mixing beam geometry. The diffraction efficiency of the gratings has been investigated as a function of laser intensity and gas pressure. Single-shot images of a helium flow in ambient air illustrate that diffraction of light from a laser-induced grating has the potential for remote, two-dimensional diagnostics of gas mixing processes. In addition, this coherent technique is used to image a sooty flame.  相似文献   

20.
Single-pulse two-dimensional picosecond Laser-Induced Fluorescence (LIF) imaging of the OH density in a single quantum state was performed for the first time, using a premixed methane-oxygen flame at atmospheric pressure. A picosecond, excimer-Raman-laser system (268 nm, 470 ps FWHM) was used for excitation of OH. The fluorescence from the laser sheet was imaged onto a fast gated intensified camera with a 400 ps gate width. The short laser pulse minimizes the collisional redistribution of population in the ground state during excitation, while the short camera gate avoids significant quenching of the excited-state fluorescence. The fluorescence signal obtained in this way is a direct measure of the population in a selected quantum state. In contrast to common nanosecond LIF signals no corrections on variations of the collisional environment are necessary. This collision-insensitive approach to two-dimensional LIF yields an OH detection limit of 10 ppm in a cube of 330 µm per side with a single 1 mJ laser pulse. A rate-equation model is used to estimate the effects on the observed signal of fluctuations in pulse energy and duration, laser-camera timing jitter, and spatial variations in the collisional environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号