首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new polystyrene-based monolithic stationary phase, which was prepared by single step in situ copolymerization of styrene, divinylbenzene and vinylbenzenesulfonic acid (VBSA), was developed as a separation column for capillary electrochromatography, in which VBSA was employed as the charge-bearing monomer. Polymerization time of the polystyrene-based monolith had slightly influenced the separation time of the tested analytes, but it effectively altered their separation resolutions. Furthermore, baseline separation for a wider range of acetonitrile levels of mobile phase was achieved when a monolithic column prepared by a longer polymerization time was used. This novel polystyrene-based monolithic column provided an adequate electroosmotic flow either in basic or acidic mobile phase when VBSA level was maintained at 2.6% (w/w). Finally, this proposed polystyrene-based column allowed seven tested analytes to achieve a reproducible baseline separation within 2.2 min with theoretical plate numbers higher than 164 000 plates/m.  相似文献   

2.
In this study, a series of poly(styrene-divinylbenzene-methacrylic acid) monolithic capillaries was used as the separation column of CEC for the analyses of parabens in commercial pharmaceutical and cosmetic products. The results showed that the chromatographic characteristics of these analytes were strongly affected by the preparation condition of the monolithic column including monomer content, porogenic solvent composition, and polymerization time. Baseline separations were markedly sped up by lowering the polymerization time without any obvious loss of resolution. Furthermore, mobile-phase composition (pH, ACN, and electrolyte concentration) was also able to effectively improve the separation behavior. Similar to the influence of lowering the polymerization time, retention times for all analytes were significantly shortened in the CEC method by decreasing the electrolyte concentration in the mobile phase.  相似文献   

3.
A novel monolithic capillary column (530 microm i.d.) was prepared for capillary liquid chromatography (CLC) by in situ copolymerization of octyl methacrylate (MAOE) and ethylene dimethacrylate (EDMA) in the presence of a porogen solvent containing 1-propanol, 1,4-butanediol, and water with azobisisobutyronitrile as the initiator. The influences of the contents of the porogen solvent, EDMA and the various concentration ratios of 1-propanol to 1,4-butanediol in the polymerization mixture on the morphology, porosity, globule size, stability and column efficiency were investigated. The morphology and pore size distribution of monolithic capillary columns were characterized by SEM and mercury intrusion porosimetry, respectively. Chromatographic evaluations of the columns were performed under CLC mode. The results showed that good permeability and stability can be obtained under optimal experimental conditions. The separation results of some acid, neutral and basic analytes demonstrated the hydrophobicity and low affinity to basic analytes of the new column. Three metal ions, i.e. Mg(II), Zn(II) and Cd(II) were also separated under ion-pair mode on the new monolithic capillary column and the results were acceptable.  相似文献   

4.
光聚合整体式咖啡因印迹毛细管柱的制备及分离性能   总被引:6,自引:0,他引:6  
分子印迹技术作为一种制备对目标分子具有专一识别能力的功能高分子的方法 ,近年来在化学化工、生物化学与生物技术的许多领域中得到广泛应用 [1~ 4 ] .分子印迹技术与微分离方法 (包括微柱液相色谱、毛细管电泳、毛细管电色谱和芯片分离等 )结合已引起人们极大的兴趣和关注[5,6] .毛细管柱是毛细管电色谱和微柱液相色谱的关键部件 ,目前普遍使用的是烷基键合硅胶微粒的填充柱 ,存在制备时须烧塞和填充两大困难 ,以及使用时易产生气泡和易折断等缺点 .将含被识别分子 (印迹分子 )、交联剂、溶剂、功能单体和引发剂的混合液注入毛细管 ,经光…  相似文献   

5.
Butyl methacrylate monolithic columns in 320 microm i.d. fused silica capillaries for reversed-phase capillary liquid chromatography were prepared by radical polymerization initiated thermally with azobisisobutyronitrile (AIBN). Polymerization mixture contained butyl methacrylate (BMA) as the function monomer and ethylene dimethacrylate (EDMA) as the crosslinking agent with 1,4-butanediol and 1-propanol as a binary porogen solvent. Ratio of 1,4-butanediol to 1-propanol in the porogen solvent was optimized regarding the monolithic column efficiency and performance. Total porosity, column permeability, separation impedance, Walters hydrophobicity index, retention factors, peak asymmetry factors, height equivalents to a theoretical plate and peak resolutions were used for characterization of the prepared monolithic columns. The polymerization mixture consisting of 17.8% of BMA, 21.8% of EDMA, 18.0% of 1,4-butanediol, 42.0% of 1-propanol and 0.4% AIBN generated monolithic columns of the best performance having a sufficient permeability and the lowest separation impedance. It was also demonstrated that monolithic columns of this composition exhibited good preparation reproducibility and an excellent pressure resistance when applied in capillary liquid chromatography.  相似文献   

6.
Dong J  Ou J  Dong X  Wu R  Ye M  Zou H 《Journal of separation science》2007,30(17):2986-2992
A CEC monolithic column with strong cation-exchange (SCX) stationary phase based on hydrophilic monomers was prepared by in situ polymerization of acrylamide, methylenebisacrylamide, and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) in a complete organic binary porogenic solvent consisting of DMSO and dodecanol. The sulfonic groups provided by the monomer AMPS on the surface of the stationary phase generate an EOF from anode to cathode, and serve as an SCX stationary phase at the same time. The monolithic stationary phase exhibited normal-phase chromatographic behavior for neutral analytes. For charged analytes, electrostatic interaction/repulsion with the monolith was observed. The strong SCX monolithic column has been successfully employed in the electrochromatographic separation of basic drugs, peptides, and alkaloids extracted from natural products.  相似文献   

7.
High efficiency and highly retentive monolithic silica capillary columns were obtained by polymerization of octadecyl methacrylate using alpha,alpha'-azobis-isobutyronitrile (AIBN) as a free radical initiator. Hybrid type monolithic silica columns (25 cm total length x 200 microm I.D.) prepared from a mixture of tetramethoxysilane and methyltrimethoxysilane were used as a support. The effects of the monomer and the radical initiator concentrations in the reaction mixture were examined. The performance of the columns was tested in terms of column efficiency and retention behavior by using alkylbenzenes and a few other compounds as solutes and compared with that of hybrid monolithic silica columns modified with octadecylsilyl-(N,N-diethylamino)silane (ODS-DEA). Highly retentive monolithic silica columns were obtained by polymerization at high monomer concentrations. Although a decrease in column efficiency was observed with the increase in the monomer concentration in a feed mixture, an improvement in efficiency was achieved (a plate height value lower than 10 microm) by increasing an initiator concentration without significant variations in column retention properties. Results obtained by polymerization using other monomers are also presented to demonstrate the applicability of the preparation method.  相似文献   

8.
A novel cationic hydrophilic interaction monolithic stationary phase based on the copolymerization of 2-(methacryloyloxy)ethyltrimethylammonium methyl sulfate (META) and pentaerythritol triacrylate (PETA) in a binary porogenic solvent consisting of cyclohexanol/ethylene glycol was designed for performing capillary liquid chromatography. While META functioned as both the ion-exchange sites and polar ligand provider, the PETA, a trivinyl monomer, was introduced as cross-linker. The monolithic stationary phases with different properties were easily prepared by adjusting the amount of META in the polymerization solution as well as the composition of the porogenic solvent. The hydrophilicity of the monolith increased with increasing content of META in the polymerization mixture. A typical hydrophilic interaction chromatography mechanism was observed when the content of acetonitrile in the mobile phase was higher than 20%. The poly(META-co-PETA) monolith showed very good selectivity for neutral, basic and acidic polar analytes. For polar-charged analytes, both hydrophilic interaction and electrostatic interaction contributed to their retention. Peak tailing of basic compounds was avoided and the efficient separation of benzoic acid derivatives was obtained.  相似文献   

9.
Modern rigid porous polymer monoliths were conceived as a new class of stationary phases in classical columns in the early 1990s and later extended to the capillary format. These monolithic materials are typically prepared using a simple molding process carried out within the confines of the capillary. Polymerization of a mixture comprising monomers, initiator, and porogenic solvent affords macroporous materials with large through-pores that enable applications in a rapid flow-through mode. Since all the mobile phase must flow through the monolith, convection considerably accelerates mass transport within the monolithic separation medium and improves the separations. As a result, monolithic columns perform well even at very high flow rates. Various mechanisms including thermally and UV initiated free radical polymerization as well as ring opening metathesis copolymerizations were demonstrated for the preparation of monolithic capillary columns. The versatility of these preparation techniques was demonstrated by their use with hydrophobic (styrene, divinylbenzene, butyl methacrylate, ethylene dimethacrylate), hydrophilic (2-hydroxyethyl methacrylate, methacrylamide, methylenebisacrylamide), ionizable (vinylsulfonic acid, 2-acrylamido-2-methyl-propanesulfonic acid), and tailor-made (norborn-2-ene, 1,4,4a,5,8,8a-hexahydro-1,4,5,8-exo,endo-dimethanonaphthalene) monomers. Variation of polymerization conditions enables control of the porous properties of the monolith over a broad range and mediates the hydrodynamic properties of the monolithic columns. The applications of polymer-based monolithic capillary columns are demonstrated for numerous separations in the microHPLC mode.  相似文献   

10.
分子印迹整体柱在高效液相色谱和电色谱手性分离中的应用   总被引:15,自引:0,他引:15  
在常规不锈钢色谱管中以甲基丙烯酸为功能单体,采用原位聚合法制备了(5S,11S)-特罗格尔碱(S-TB)的印迹整体柱。考察了流动相中添加不同量的醋酸和水对分离的影响,结合台阶梯度洗脱模式在S-TB整体柱上实现了对TB消旋体的快速分离。另外,以碱性单体2-二甲基乙基胺甲基丙烯酸酯(DAMA)为功能单体,在毛细管中采用原位聚合法制备了毛细管分子印迹整体柱,用于在毛细管电色谱(CEC)中对消旋体1,1′-联-2-萘酚(BNL)进行手性分离。结果表明,以AMA为功能单体可以制备其他酸性模板的分子印迹聚合物,从而扩大了分子印迹聚合物MIP)在CEC分离中的应用范围。  相似文献   

11.
The conventional analytical HPLC was successfully developed for micro-column separation by using a simple eluate splitting system, a self-preparation of monolithic column and an on-capillary column detector in our laboratory. A typical polystyrene-based monolith was quickly prepared inside the fused-silica capillary, which in situ polymerization was carried out in 10 min by microwave irradiation. The reactant solution consisted of styrene (ST) as a functional monomer, divinylbenzene (DVB) as a cross-linking agent, toluene and isooctane as porogenic solvents, and azobisisobutyronitrile (AIBN) as an initiator. The monolith was proved to form in the center of the capillary and adhered to the column inner wall by the scanning electron micrograph. Its chromatographic behaviors were evaluated in detail by varying the flow rate and percentage of mobile phases, and under the optimal condition, baseline separation of the model analytes including thiourea, benzene, toluene, ethylbenzene was obtained with a highest theoretical plate number near 11,290 N/m by the developed capillary HPLC. Furthermore, the stability and porosity of the prepared monolith were systematically investigated by a simple flow method. Figure A polystyrene-based monolith was rapidly prepared inside the fused-silica capillary, which in situ polymerization was carried out about 10 min by microwave irradiation.  相似文献   

12.
The potential of N,N-dimethylacrylamide-piperazine diacrylamide-based monolithic stationary phases bearing sulfonic acid groups for electroosmotic flow generation is investigated for the separation of positively charged amino acids and peptides. The capillary columns were used under electrochromatographic but also under purely chromatographic (nano-HPLC) conditions and the separations interpreted as the result of possible chromatographic and electrophoretic contributions. The stationary phases were found to be mechanically stable up to pressures of 190 bar and chemically stable towards a wide variety of organic and hydro-organic mobile phases. In order to investigate the retention mechanism, the salt concentration and the organic solvent content of the (hydro-)organic mobile phase were varied in a systematic manner, taking three aromatic amino acids (phenylalanine, tryptophan, histidine) as model analytes. The respective contributions of electrostatic and hydrophobic and/or hydrophilic interactions were further investigated by varying the charge density and the hydrophobicity of the standard stationary phase. The former was done by varying the amount of charged monomer (vinylsulfonic acid) added during synthesis, the latter by (partially) replacing the interactive monomer (N,N-dimethylacrylamide) by other more hydrophobic monomers. A mixed mode retention mechanism based primarily on electrostatic interactions modified in addition by "hydrophilic" ones seems most suited to interpret the behavior of the amino acids, which stands in contradistinction to the previously investigated case of the behavior of neutral analytes on similar stationary phases. Finally the separation of small peptides was investigated. While the separation of Gly-Phe and Gly-Val was not possible, the separation of Phe-Gly-Phe-Gly and Gly-Phe but also of the closely related Gly-His and Gly-Gly-His could be achieved.  相似文献   

13.
A novel polymethacrylate‐based monolithic column with covalently bonded zwitterionic functional groups was prepared by in situ copolymerization of N,N‐dimethyl‐N‐methacryloxyethyl N‐(3‐sulfopropyl) ammonium betaine (SPE), pentaerythritol triacrylate (PETA), and vinylsulfonic acid (VS) in a binary porogenic solvent consisting of cyclohexanol and ethylene glycol. This monolith was developed as a separation column for CEC. While SPE functioned as both an electrostatic interaction stationary phase and the polar ligand provider, VS was employed to generate EOF. PETA, which has much more hydrophilicity due to a hydroxyl sub‐layer, was used to replace ethylene dimethacrylate as a cross‐linker. The monolith provided an adequate EOF when VS level was maintained at 0.6% w/w. Different monolithic stationary phases were easily prepared by adjusting the ratio of PETA/SPE in the polymerization solution as well as the composition of the porogenic solvent. The observed RSD were ≤3.6, ≤4.3 and ≤5.6% for the EOF velocity, retention time, and column efficiency, respectively. The column efficiencies greater than 145 000 theoretical plates/m for thiourea and 132 000 theoretical plates/m for charged cytidine were obtained. The poly(SPE‐co‐PETA‐co‐VS) monolith showed good selectivity for neutral and charged polar analytes. It was found that the separation mechanism of charged polar solutes was attributed to a mixed mode of hydrophilic interaction and electrostatic interaction, as well as electrophoresis. No peak tailing was observed for the separation of basic compounds, such as basic nucleic acid bases and nucleoside on the monolith.  相似文献   

14.
Employing solubilization by complexation with CDs, new mixed-mode monolithic stationary phases for CEC and micro-LC were synthesized. Free radical copolymerization was performed in aqueous solution with a CD-solubilized hydrophobic monomer, a water-soluble crosslinker (piperazinediacrylamide), and a charged monomer (vinylsulfonic acid). Different hydrophobic methacrylate monomers (isobornyl, adamantyl, cyclohexyl, and phenyl methacrylate) were investigated. Chromatographic properties of the synthesized monoliths were studied with aqueous and nonaqueous mobile phases with hydrophobic and polar analytes. Due to the amphiphilic nature of the polymers synthesized, the elution orders obtained correspond to the RP mode and to the normal-phase mode dependent on the polarity of the mobile phase. However, observations made with polar solutes and polar mobile phase can only be explained by a mixed-mode retention mechanism. The influence of the total monomer concentration (%T) on the chromatographic properties and on the specific permeability was elucidated. Run-to-run, day-to-day, and capillary-to-capillary reproducibility of electroosmotic mobility and retention factors were determined. Comparison of retention data with those of a commercial octadecyl silica gel HPLC column reveals that the methylene selectivity of the monolithic capillaries prepared in this study is very similar to that of routinely used octadecyl silica gels.  相似文献   

15.
A method is described for the synthesis of rigid, macroporous polymers (monoliths) to be used as stationary phases in capillary electrochromatography (CEC). The procedure reproducibly results in columns with good mechanical and chemical stability. Once the procedure was optimized, it yielded the desired CEC columns in nearly 100% of the cases. The batch-to-batch standard deviation of the migration of the electroosmotic flow (EOF) marker for nine randomly chosen columns was 5%. The polymerization is carried out inside the capillary, an aqueous phase is used as solvent. Monomers based on acrylamides with varying hydrophilicity were used to introduce the interactive moieties together with piperazine diacrylamide as cross-linker and vinylsulfonic acid as provider of the charged, EOF-producing moieties. The pore size of the monoliths was adjusted by adding varying amounts of ammonium sulfate to the reaction mixture. In this manner, the average pore size of a given monolith could be reproducibly adjusted to values ranging from 50 nm to 1.3 microm. The procedure was optimized for four particular types of monoliths, which differed in hydrophobicity. The latter was adjusted by introducing suitable co-monomers, such as alkyl chain-bearing molecules, into the monolithic structure. Attempts to systematically investigate the chromatographic behavior of the monolithic stationary phases were made, using a model mixture of aromatic compounds as sample. The standard deviations for the run-to-run reproducibility of the retention times for unretained and retained analytes were <1.5%. Flat Van Deemter curves were measured even at elevated flow-rates (2 mm/s). Plate heights between 10 and 15 microm were measured in this range. The retention order was taken as the principal indication for the chromatographic mode. The separation was found to be governed neither by pure reversed-phase nor by pure normal-phase chromatography, even on monoliths, where large amounts of C6 ligands had been introduced.  相似文献   

16.
In this study, eight benzophenones, which are commonly used as UV filters in various cosmetics and plastics, were analyzed by capillary electrochromatography with a methacrylate ester-based monolithic column. The effects of the composition and pH of mobile phase, porogenic solvent ratio, and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) content on benzophenone separations were examined. For all benzophenones, separation performances were markedly improved in monolithic columns with larger 1-propanol ratio and higher AMPS content. Furthermore, a twofold increase in AMPS content almost reduced the separation time in half when a monolithic column had an adequately high surface area, i.e. monolithic column was produced in a higher ratio of 1-propanol. As well, the retention behaviors of these analytes in the monolithic column were strongly influenced by the level of acetonitrile in the mobile phase, and the pH of the mobile phase also had an apparent influence on separation resolution.  相似文献   

17.
A monolithic capillary column with a mixed‐mode stationary phase of reversed‐phase/hydrophilic interaction chromatography was prepared for capillary liquid chromatography. The monolith was created by an in‐situ copolymerization of a homemade monomer N,N‐dimethyl‐N‐acryloxyundecyl‐N‐(3‐sulfopropyl) ammonium betaine and a crosslinker pentaerythritol triacrylate in a binary porogen agent consisting of methanol and isopropanol. The functional monomer was designed to have a highly polar zwitterionic sulfobetaine terminal group and a hydrophobic long alkyl chain moiety. The composition of the polymerization solution was systematically optimized to permit the best column performance. The columns were evaluated by using acidic, basic, polar neutral analytes, as well as a set of alkylbenzenes and Triton X100. Very good separations were obtained on the column with the mixed‐mode stationary phase. It was demonstrated that the mixed‐mode stationary phase displayed typic dual retention mechanisms of reversed‐phase/hydrophilic interaction liquid chromatography depending on the content of acetonitrile in the mobile phase. The method for column preparation is reproducible.  相似文献   

18.
A polar and neutral polymethacrylate-based monolithic column was evaluated as a hydrophilic interaction capillary electrochromatography (HI-CEC) stationary phase with small polar–neutral or charged solutes. The polar sites on the surface of the monolithic solid phase responsible for hydrophilic interactions were provided from the hydroxy and ester groups on the surface of the monolithic stationary phase. These polar functionalities also attract ions from the mobile phase and impart the monolithic solid phase with a given zeta potential to generate electro-osmotic flow (EOF). The monolith was prepared by in situ copolymerization of a neutral monomer 2-hydroxyethyl methacrylate (HEMA) and a polar cross-linker with hydroxy group, pentaerythritol triacrylate (PETA), in the presence of a binary porogenic solvent consisting cyclohexanol and dodecanol. A typical HI-CEC mechanism was observed on the neutral polar stationary phase for both neutral and charged analytes. The composition of the polymerization mixture was systematically altered and optimized by altering the amount of HEMA in the polymerization solution as well as the composition of the porogenic solvent. The monoliths were tested in the pCEC mode. The resulting monoliths had different characteristics of hydrophilicity, column permeability, and efficiency. The effects of pH, salt concentration, and organic solvent content on the EOF velocity and the separation of nucleic acids and nucleosides on the optimized monolithic column were investigated. The optimized monolithic column resulted in good separation and with greater than 140,000 theoretical plates/m for pCEC.  相似文献   

19.
Wang  Liang  Wu  Minghuo  Wang  Qixue  Zhan  Jingjing  Chen  Hongbo 《Chromatographia》2016,79(19):1263-1269

Polyethylenimine (PEI) and 2,4,6,8-tetramethyl-2,4,6,8-tetrakis(propyl glycidyl ether)cyclotetrasiloxane (POSS–epoxy) were used as precursors for the preparation of organic-silica hybrid monolithic columns (PEI–POSS monolith) via epoxy–amine ring-opening polymerization (ROP). The high density of amine groups in PEI provides rich chromatographic interaction sites for the polar or acidic analytes in hydrophilic interaction (HILIC) and weak anion exchange (WAX) mechanisms. The column preparation conditions, such as the porogens, solvent and reaction temperature, were systematically investigated according to the morphology, permeability and column efficiency. The separation mechanisms of HILIC and WAX were evaluated with neutral polar compounds and halogen benzoic acids. Owing to the existence of reactive amine groups on the matrix surface, the PEI–POSS monolith is also an ideal starting material for the preparation of HILIC or strong anionic exchange (SAX) stationary phases by modification. The modification of PEI–POSS monoliths with iodomethane or bromoacetic acid via the nucleophilic substitution reaction could achieve the retention mechanisms of SAX or zwitterionic HILIC, respectively.

  相似文献   

20.
Zhang M  El Rassi Z 《Electrophoresis》2001,22(12):2593-2599
In this report, we describe the preparation of porous polyacrylamide-based monolithic columns via vinyl polymerization. These monoliths possess in their structures bonded dodecyl ligands and sulfonic acid groups. While the sulfonic acid groups are meant to support the electroosmotic flow (EOF) necessary for moving the mobile phase through the monolithic capillary, the dodecyl ligands are introduced to provide the nonpolar sites for chromatographic retention. However, incorporating the sulfonic acid groups in the monoliths does not only support the EOF but also exhibit hydrophilic interaction with moderately polar compounds such as urea herbicides and carbamates insecticides. Consequently, mixed-mode (reversed-phase/normal phase) retention behavior is observed with neutral and moderately polar pesticides. The amount of sulfonic acid group in the monolith can be conveniently adjusted by changing the amount of vinylsulfonic acid added to the polymerization reaction. Optimum EOF velocity and adequate chromatographic retention are obtained when 15% vinylsulfonic acid is added to the reaction mixture. Under these conditions, rapid separation and high plate counts reaching greater than 400000 plates/m are readily obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号