首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper characterizes the conditions required to form nanoliter-sized droplets (plugs) of viscous aqueous reagents in flows of immiscible carrier fluid within microfluidic channels. For both non-viscous (viscosity of 2.0 mPa s) and viscous (viscosity of 18 mPa s) aqueous solutions, plugs formed reliably in a flow of water-immiscible carrier fluid for Capillary number less than 0.01, although plugs were able to form at higher Capillary numbers at lower ratios of the aqueous phase flow rate to the flow rate of the carrier fluid (in all the experiments performed, the Reynolds number was less than 1). The paper also shows that combining viscous and non-viscous reagents can enhance mixing in droplets moving through straight microchannels by providing a nearly ideal initial distribution of reagents within each droplet. The study should facilitate the use of this droplet-based microfluidic platform for investigation of protein crystallization, kinetics, and assays.  相似文献   

2.
Electro-hydrodynamic micro-fluidic mixer   总被引:1,自引:0,他引:1  
Fluid mixing in microchannels is needed for many applications ranging from bio-arrays to micro-reactors, but is typically difficult to achieve. A simple geometry micro-mixer is proposed based on the electro-hydrodynamic (EHD) force present when the fluids to be mixed have different electrical properties and are subjected to an electric field. The electrodes are arranged so that the electric field is perpendicular to the interface between the two fluids, creating a transversal secondary flow. The technique is demonstrated experimentally using the flow of two liquids with identical viscosity and density, but different electrical properties. The volume flow rate and average velocity are 0.26 microl s(-1) and 4.2 mm s(-1), respectively, corresponding to a Reynolds number Re= 0.0174. The effect of a continuous (DC) electric field and two alternating (AC)- sinusoidal and square - electric fields is explored. At the appropriate parameter values, very good mixing takes place in less than 0.1 s, over a very short distance (within a fraction of the width 250 microm of the electrodes).  相似文献   

3.
An extremely simple, power-free pumping method for poly(dimethylsiloxane)(PDMS) microfluidic devices is presented. By exploiting the high gas solubility of PDMS, the energy for the pumping is pre-stored in the degassed bulk PDMS, therefore no additional structures other than channels and reservoirs are required. In a Y-shaped microchannel with cross section of 100 microm width x 25 microm height, this method has provided flow rate of 0.5-2 nL s(-1), corresponding to linear velocity of 0.2-0.8 mm s(-1), with good reproducibility. As an application of the power-free pumping, gold nanoparticle-based DNA analysis, which does not rely on the cross-linking mechanism between nanoparticles, has been implemented in a microchannel with three inlets. Target 15mer DNA has been easily and unambiguously discriminated from its single-base substituted mutant. Instead of colorimetric detection in a conventional microtube, an alternative detection technique suitable for microdevices has been discovered-observation of deposition on the PDMS surfaces. The channel layout enabled two simultaneous DNA analyses at the two interfaces between the three laminar streams.  相似文献   

4.
Yang S  Undar A  Zahn JD 《Lab on a chip》2007,7(5):588-595
A microfluidic device for continuous biosensing based on analyte binding with cytometric beads is introduced. The operating principle of the continuous biosensing is based on a novel concept named the "particle cross over" mechanism in microfluidic channels. By carefully designing the microfluidic network the beads are able to "cross-over" from a carrier fluid stream into a recipient fluid stream without mixing of the two streams and analyte dilution. After crossing over into the recipient stream, bead processing such as analyte-bead binding may occur. The microfluidic device is composed of a bead solution inlet, an analyte solution inlet, two washing solution inlets, and a fluorescence detection window. To achieve continuous particle cross over in microfluidic channels, each microfluidic channel is precisely designed to allow the particle cross over to occur by conducting a series of studies including an analogous electrical circuit study to find optimal fluidic resistances, an analytical determination of device dimensions, and a numerical simulation to verify microflow structures within the microfluidic channels. The functionality of the device was experimentally demonstrated using a commercially available fluorescent biotinylated fluorescein isothiocyanate (FITC) dye and streptavidin coated 8 microm-diameter beads. After, demonstrating particle cross over and biotin-streptavidin binding, the fluorescence intensity of the 8 microm-diameter beads was measured at the detection window and linearly depends on the concentration of the analyte (biotinylated FITC) at the inlet. The detection limit of the device was a concentration of 50 ng ml(-1) of biotinylated FITC.  相似文献   

5.
Electroosmotic mixing in microchannels   总被引:7,自引:0,他引:7  
Mixing is an essential, yet challenging, process step for many Lab on a Chip (LOC) applications. This paper presents a method of mixing for microfluidic devices that relies upon electroosmotic flow. In physical tests and in computer simulations, we periodically vary the electric field with time to mix two aqueous solutions. Good mixing is shown to occur when the electroosmotic flow at the two inlets pulse out of phase, the Strouhal number is on the order of 1, and the pulse volumes are on the order of the intersection volume.  相似文献   

6.
Sim TS  Kwon K  Park JC  Lee JG  Jung HI 《Lab on a chip》2011,11(1):93-99
Previously we introduced a novel hydrodynamic method using a multi-orifice microchannel for size-based particle separation, which is called a multi-orifice flow fractionation (MOFF). The MOFF has several advantages such as continuous, non-intrusive, and minimal power consumption. However, it has a limitation that the recovery yield is relatively low. Although the recovery may be increased by adjusting parameters such as the Reynolds number and central collecting region, poor purity inevitably followed. We newly designed and fabricated a microfluidic channel for multi-stage multi-orifice flow fractionation (MS-MOFF), which is made by combining three multi-orifice segments, and consists of 3 inlets, 3 filters, 3 multi-orifice segments and 5 outlets. The structure and dimensions of the MS-MOFF were determined by the hydrodynamic principles to have constant Reynolds numbers at each multi-orifice segment. Polystyrene microspheres of two different sizes (7 μm and 15 μm) were tested. With this device, we made an attempt to improve recovery and minimize loss of purity by collecting and re-separating non-selected particles of the first separation. The final recovery successfully increased from 73.2% to 88.7% while the final purity slightly decreased from 91.4% to 89.1% (for 15 μm). These values were never achievable with the single-stage MOFF (SS-MOFF) having only one multi-orifice segment in our previous work. The MS-MOFF channel will be useful for clinical applications, such as separation of circulating tumor cells (CTC) or rare cells from human blood samples.  相似文献   

7.
AC electroosmotic micromixer for chemical processing in a microchannel   总被引:1,自引:0,他引:1  
A rapid micromixer of fluids in a microchannel is presented. The mixer uses AC electroosmotic flow, which is induced by applying an AC voltage to a pair of coplanar meandering electrodes configured in parallel to the channel. To demonstrate performance of the mixer, dilution experiments were conducted using a dye solution in a channel of 120 microm width. Rapid mixing was observed for flow velocity up to 12 mm s(-1). The mixing time was 0.18 s, which was 20-fold faster than that of diffusional mixing without an additional mixing mechanism. Compared with the performance of reported micromixers, the present mixer worked with a shorter mixing length, particularly at low Peclet numbers (Pe < 2 x 10(3)).  相似文献   

8.
The experimental conditions of the sample delivery inside the reagent-release capillary-based capillary-assembled microchip (RRC-based CAs-CHIP) were optimized and the reagent release procedure in the RRC is discussed. Recently, our group introduced the basic concept of the "drop-and-sip" fluid handling technique (Anal. Chem., 2007, 79, 908). A microliter volume of sample solution is dropped on the inlet hole and is sipped into another hole, producing a sample plug flow in the main poly(dimethyl siloxane) (PDMS) channel, concurrently filling each sensing capillary that faces the main PDMS channel. However, the detailed evaluation of the successful sample delivery condition and the reagent release behavior in the RRC has not been fully discussed. Under our experimental conditions, ca. 0.6 - 2.4 s of sample plug-RRC contact time allowed the successful sample introduction into the RRC by capillary force without any reagent leakage or disturbance of the sample plug flow. On the other hand, reagent release behavior inside the RRC is governed by both convective and diffusive mass transport, which leads to a faster mixing time of the sample with reagents immobilized inside the RRC compared to that expected from the simple diffusion alone.  相似文献   

9.
An interface design is presented that facilitates automated sample introduction into an electrokinetic microchip, without perturbing the liquids within the microfluidic device. The design utilizes an interface flow channel with a volume flow resistance that is 0.54-4.1 x 10(6) times lower than the volume flow resistance of the electrokinetic fluid manifold used for mixing, reaction, separation, and analysis. A channel, 300 microm deep, 1 mm wide and 15-20 mm long, was etched in glass substrates to create the sample introduction channel (SIC) for a manifold of electrokinetic flow channels in the range of 10-13 microm depth and 36-275 microm width. Volume flow rates of up to 1 mL/min were pumped through the SIC without perturbing the solutions within the electrokinetic channel manifold. Calculations support this observation, suggesting a leakage flow to electroosmotic flow ratio of 0.1:1% in the electrokinetic channels, arising from 66-700 microL/min pressure-driven flow rates in the SIC. Peak heights for capillary electrophoresis separations in the electrokinetic flow manifold showed no dependence on whether the SIC pump was on or off. On-chip mixing, reaction and separation of anti-ovalbumin and ovalbumin could be performed with good quantitative results, independent of the SIC pump operation. Reproducibility of injection performance, estimated from peak height variations, ranged from 1.5-4%, depending upon the device design and the sample composition.  相似文献   

10.
Droplet formation in a microchannel network   总被引:21,自引:0,他引:21  
A method is given for generating droplets in a microchannel network. With oil as the continuous phase and water as the dispersed phase, pico/nanoliter-sized water droplets can be generated in a continuous phase flow at a -junction. The channel for the dispersed phase is 100 microm wide and 100 microm deep, whereas the channel for the continuous phase is 500 microm wide and 100 microm deep. For given experimental parameters, regular-sized droplets are reproducibly formed at a uniform speed. The diameter of these droplets is controllable in the range from 100-380 microm as the flow velocity of the continuous phase is varied from 0.01 m s(-1) to 0.15 m s(-1).  相似文献   

11.
A continuous transport process for liquids in micro-channels is reported. Flow was generated by evaporation at the channel end plus capillary forces. The micro-channels integrated into a two-glass-layer device were 110 microm wide, 28 microm deep and 4 or 10 cm long. A continuous liquid transport velocity of up to 2.25 mm s(-1) was observed for aqueous solutions. The flow velocity is shown to increase when an air stream is guided over the evaporation zone.  相似文献   

12.
A micromachined flow cell (overall size; 25 x 25 x 1 mm3) was designed for the fast determination of hydrogen peroxide, based on a luminol-H2O2 chemiluminescence reaction catalyzed by immobilized peroxidase (POD). The flow cell consisted of a sandwich of anisotropically etched silicon and glass chips and contained a spiral channel (20 turns, 50 cm long, 150 microm wide, 20 microm depth, channel volume 1.4 microl) and two holes (1 mm diameter). POD was covalently immobilized with 3-(trimethoxysilyl)propyldietylenetriamine and glutaraldehyde on the inner surface of the channel. The chip was placed in front of a window of a photomultiplier tube and used as a flow cell in a single-line flow-injection analysis system using a luminol solution as a carrier solution. The sample volume for one measurement was 0.2 microl. The maximal sampling rate was 315 h(-1) at a carrier solution flow rate of 10 microl min(-1). A calibration graph for H2O2 was linear for 5 nM - 5 microM; the detection limit (signal-to-noise = 3) was 1 nM (7 fg in 0.2 microl injection). The H2O2 concentration in rainwater was determined using this sensor system.  相似文献   

13.
Photocyanation of pyrene (PyH) across an oil/water interface was explored by using two types of polymer microchannel chip. The chips (channel depth of 20 microm and width of 100 microm) were fabricated on the basis of photolithography and an imprinting method, with micromachined silicon templates being used for imprinting. As a typical example of the photoreaction, an aqueous NaCN solution and a propylene carbonate solution of PyH and 1,4-dicyanobenzene were brought separately into a Y-structured microchannel chip with the same flow velocity by pressure driven flow. Light irradiation onto the whole of the channel chip by a high-pressure Hg lamp resulted in formation of 1-cyanopyrene (PyCN), as confirmed by GC-MS analysis of the oil phase. The results demonstrated that the interfacial photochemical reaction of PyH proceeded successfully along the water/oil solution flow in the microchannel. Under optimum conditions by using a three-layer channel chip, absolute PyCN yields as high as 73% were attained with a reaction time of 210 s.  相似文献   

14.
Flow of microgel capsules through topographically patterned microchannels   总被引:1,自引:0,他引:1  
We investigated the flow dynamics of microgel capsules in topographically patterned microfluidic devices. For microgels flowing through channel constrictions, or orifices, we observed three phenomena: (i) the effect of confinement, (ii) the role of interactions between the microgels and the channel surface, and (iii) the effect of the velocities of microgels prior to their passage through an orifice. We studied negatively charged alginate microgels and positively charged alginate microgels coated with N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride (HTCC). Aqueous dispersions of microgels were driven through poly(dimethyl siloxane) microchannels carrying a weak negative surface charge. The velocity of the continuous phase, and hence, the velocity of the microgels increased as they passed through topographically patterned orifices. Alginate microgels were observed to have a larger increase in velocity relative to HTCC-coated alginate microgels. This effect, which was attributed to electrostatic attraction or repulsion, was found to be strongest for orifices with dimensions close to the microgel diameter. For example, when 75 microm-diameter microgels flowed through a 76 microm orifice, alginate gels (negatively charged) experienced a 2x greater increase in velocity than HTCC-coated (positively charged) microgels. This effect was exaggerated at lower initial flow rates. For example, when 75 microm-diameter microgels flowed through an 80 microm orifice, a two-fold difference in the velocity changes of the two microgel types was observed when the initial flow rate was 275 microm s(-1), while a three-fold difference in velocity changes was observed when the initial flow rate was 130 microm s(-1). We speculate that these studies will be useful for modeling the flow of suspensions of cells or other biologically relevant particles for a wide range of applications.  相似文献   

15.
An easy-to-use and low cost microreactor made of polymethylmethacrylate was mechanically fabricated with a microchannel (200 microm x 200 microm). The laminar flow behavior was investigated by visualizing the flow of red and green aqueous solutions. Digitized color images from a CCD camera were analyzed by resolving the color in RGB mode. Numeric data from red and green color components in the images could reveal the fluidic behavior in the microchannel because the spatial spectroscopic information corresponds to the color solution flows. Effects of corner shapes in a turn, flow rate and surface roughness were observed on the mixing of the laminar flows. A right angle turn and unevenness of +/-10% of the inner wall surface almost mixed the two color laminar flows.  相似文献   

16.
Heule M  Manz A 《Lab on a chip》2004,4(5):506-511
The prospects of performing DNA hybridisation assays in a novel sequential scheme are explored in this article. It is based on recording the kinetics of hybridisation on a microfluidic device measuring only 10 by 5 mm. It contains a split channel system for fast mixing and a subsequent meandering channel to observe the evolution of the mixture by optical means. The problems of diffusion limitations in the laminar flow regime are overcome by reducing the average diffusion distance to a few micrometers only. DNA oligomers (20-mers) of different sequences were injected on the chip for mixing. The detection of hybridisation was based on the fluorescence of DNA-intercalating dyes. Two modes of operation were investigated. First, the samples were injected into the micromixing device at a high flow rate of 40 microl min(-1). When the sample passed through the actual micromixing unit, the flow rate was reduced to allow for measurement of fluorescence levels at various steady-state reaction times in the range of 2-15 s, as defined by the channel geometry. Using this continuous flow approach, photobleaching of fluorophores could be avoided. In a buffer containing 0.2 M NaCl, 2 base-pair mismatches could routinely be detected within 5-20 s. Single base-pair mismatches were successfully identified under low salt conditions. In the second mode, the flow was completely stopped and the evolution of the total fluorescence signal influenced by the hybridisation of oligomers and photobleaching was observed. Whereas the sequence-dependent effects remained unchanged, the assay times between the mixing of two oligomers and clear identification of their hybridisation properties could be reduced down to a maximum of 5-7 s, in some cases even below 1 s.  相似文献   

17.
Millisecond kinetics on a microfluidic chip using nanoliters of reagents   总被引:2,自引:0,他引:2  
This paper describes a microfluidic chip for performing kinetic measurements with better than millisecond resolution. Rapid kinetic measurements in microfluidic systems are complicated by two problems: mixing is slow and dispersion is large. These problems also complicate biochemical assays performed in microfluidic chips. We have recently shown (Song, H.; Tice, J. D.; Ismagilov, R. F. Angew. Chem., Int. Ed. 2003, 42, 768-772) how multiphase fluid flow in microchannels can be used to address both problems by transporting the reagents inside aqueous droplets (plugs) surrounded by an immiscible fluid. Here, this droplet-based microfluidic system was used to extract kinetic parameters of an enzymatic reaction. Rapid single-turnover kinetics of ribonuclease A (RNase A) was measured with better than millisecond resolution using sub-microliter volumes of solutions. To obtain the single-turnover rate constant (k = 1100 +/- 250 s(-1)), four new features for this microfluidics platform were demonstrated: (i) rapid on-chip dilution, (ii) multiple time range access, (iii) biocompatibility with RNase A, and (iv) explicit treatment of mixing for improving time resolution of the system. These features are discussed using kinetics of RNase A. From fluorescent images integrated for 2-4 s, each kinetic profile can be obtained using less than 150 nL of solutions of reagents because this system relies on chaotic advection inside moving droplets rather than on turbulence to achieve rapid mixing. Fabrication of these devices in PDMS is straightforward and no specialized equipment, except for a standard microscope with a CCD camera, is needed to run the experiments. This microfluidic platform could serve as an inexpensive and economical complement to stopped-flow methods for a broad range of time-resolved experiments and assays in chemistry and biochemistry.  相似文献   

18.
Nguyen NT  Huang X 《Lab on a chip》2005,5(11):1320-1326
This paper theoretically and experimentally investigates a micromixer based on combined hydrodynamic focusing and time-interleaved segmentation. Both hydrodynamic focusing and time-interleaved segmentation are used in the present study to reduce mixing path, to shorten mixing time, and to enhance mixing quality. While hydrodynamic focusing reduces the transversal mixing path, time-interleaved sequential segmentation shortens the axial mixing path. With the same viscosity in the different streams, the focused width can be adjusted by the flow rate ratio. The axial mixing path or the segment length can be controlled by the switching frequency and the mean velocity of the flow. Mixing ratio can be controlled by both flow rate ratio and pulse width modulation of the switching signal. This paper first presents a time-dependent two-dimensional analytical model for the mixing concept. The model considers an arbitrary mixing ratio between solute and solvent as well as the axial Taylor-Aris dispersion. A micromixer was designed and fabricated based on lamination of four polymer layers. The layers were machined using a CO2 laser. Time-interleaved segmentation was realized by two piezoelectric valves. The sheath streams for hydrodynamic focusing are introduced through the other two inlets. A special measurement set-up was designed with synchronization of the mixer's switching signal and the camera's trigger signal. The set-up allows a relatively slow and low-resolution CCD camera to freeze and to capture a large transient concentration field. The concentration profile along the mixing channel agrees qualitatively well with the analytical model. The analytical model and the device promise to be suitable tools for studying Taylor-Aris dispersion near the entrance of a flat microchannel.  相似文献   

19.
This paper presents a microfluidic chip for highly efficient separation of red blood cells (RBCs) from whole blood on the basis of their native magnetic properties. The glass chip was fabricated by photolithography and thermal bonding. It consisted of one inlet and three outlets, and a nickel wire of 69-microm diameter was positioned in the center of a separation channel with 149-microm top width and 73-microm depth by two parallel ridges (about 10 microm high). The two ridges were formed simultaneously during the wet etching of the channels. The nickel wire for generating the magnetic gradient inside the separation channel was introduced from the side of the chip through a guide channel. The external magnetic field was applied by a permanent magnet of 0.3 T placed by the side of the chip and parallel to the main separation channel. The RBCs were separated continuously from the 1:40 (v/v) diluted blood sample at a flow rate in the range 0.12-0.92 microL/min (9-74 mm/min) with the chip, and up to 93.7% of the RBCs were collected in the middle outlet under a flow rate of 0.23 microL/min. The cell sedimentation was alleviated by adjusting the specific density of the supporting media with bovine serum albumin. Quantum dot labeling was introduced for visual fluorescence tracking of the separation process. The uneven distribution phenomenon of the blood cells around the nickel wire was reported and discussed.  相似文献   

20.
The progressive development of a micro-fluidic manifold for the chemiluminescent detection of copper in water samples, based on the measurement of light emitted from the Cu(ii) catalysed oxidation of 1,10-phenanthroline by hydrogen peroxide, is reported. Micro-fluidic manifolds were designed and manufactured from polymethylmethacrylate (PMMA) using three micro-fabrication techniques, namely hot embossing, laser ablation and direct micro-milling. The final laser ablated design incorporated a reagent mixing channel of dimensions 7.3 cm in length and 250 x 250 microm in width and depth (triangular cross section), and a detection channel of 2.1 cm in length and 250 x 250 microm in width and depth (total approx. volume of between 16 to 22 microL). Optimised reagents conditions were found to be 0.07 mM 1,10-phenanthroline, containing 0.10 M cetyltrimethylammonium bromide and 0.075 M sodium hydroxide (reagent 1 delivered at 0.025 mL min(-1)) and 5% hydrogen peroxide (reagent 2 delivered at 0.025 mL min(-1)). The sample stream was mixed with reagent 1 in the mixing channel and subsequently mixed with reagent 2 at the start of the detection channel. The laser ablated manifold was found to give a linear response (R(2) = 0.998) over the concentration ranges 0-150 microg L(-1) and be reproducible (% RSD = 3.4 for five repeat injections of a 75 microg L(-1) std). Detection limits for Cu(ii) were found to be 20 microg L(-1). Selectivity was investigated using a copper selective mini-chelating column, which showed common cations found in drinking waters did not cause interference with the detection of Cu(ii). Finally the optimised system was successfully used for trace Cu(ii) determinations in a standard reference freshwater sample (SRM 1640).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号