首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
To control the activity of photosensitized singlet oxygen ((1)O(2)) generation, the electron donor-connecting porphyrin, 5-(9'-anthryl)-10,15,20-tris(p-pyridyl)porphyrin (AnTPyP), was designed and synthesized. AnTPyP became water-soluble by the protonation of the pyridyl moieties in the presence of 5 mM trifluoroacetic acid (pH 2.3). The photoexcited state of the porphyrin ring in an AnTPyP molecule was effectively deactivated by intramolecular electron transfer from the anthracene moiety within 0.04 ns in an aqueous solution. The deactivation was suppressed by the interaction with a DNA strand, resulting in the elongation of the lifetime of the porphyrin excited state and the enhancement of the fluorescence intensity. Furthermore, it was confirmed that the interaction enabled the photoexcited AnTPyP to generate (1)O(2). Selective (1)O(2) generation by forming a complex with DNA should be the initial step to realize the target selective photodynamic therapy.  相似文献   

2.
After the generation by different photosensitizers, the direct detection of singlet oxygen is performed by measuring its luminescence at 1270 nm. Using an infrared sensitive photomultiplier, the complete rise and decay time of singlet oxygen luminescence is measured at different concentrations of a photosensitizer, quencher, or oxygen. This allows the extraction of important information about the photosensitized generation of singlet oxygen and its decay, in particular at different oxygen concentrations. Based on theoretical considerations all important relaxation rates and rate constants were determined for the triplet T(1) states of the photosensitizers and for singlet oxygen. In particular, depending on the oxygen or quencher concentration, the rise or the decay time of the luminescence signal exhibit different meanings regarding the lifetime of singlet oxygen or triplet T(1)-state. To compare with theory, singlet oxygen was generated by nine different photosensitizers dissolved in either H2O, D2O or EtOD. When using H2O as solvent, the decaying part of the luminescence signal is frequently not the lifetime of singlet oxygen, in particular at low oxygen concentration. Since cells show low oxygen concentrations, this must have an impact when looking at singlet oxygen detection in vitro or in vivo.  相似文献   

3.
UVA, which accounts for approximately 95% of solar UV radiation, can cause mutations and skin cancer. Based mainly on the results of our study, this paper summarizes the mechanisms of UVA-induced DNA damage in the presence of various photosensitizers, and also proposes a new mechanism for its chemoprevention. UVA radiation induces DNA damage at the 5'-G of 5'-GG-3' sequence in double-stranded DNA through Type I mechanism, which involves electron transfer from guanine to activated photosensitizers. Endogenous sensitizers such as riboflavin and pterin derivatives and an exogenous sensitizer nalidixic acid mediate DNA photodamage via this mechanism. The major Type II mechanism involves the generation of singlet oxygen from photoactivated sensitizers, including hematoporphyrin and a fluoroquinolone antibacterial lomefloxacin, resulting in damage to guanines without preference for consecutive guanines. UVA also produces superoxide anion radical by an electron transfer from photoexcited sensitizers to oxygen (minor Type II mechanism), and DNA damage is induced by reactive species generated through the interaction of hydrogen peroxide with metal ions. The involvement of these mechanisms in UVA carcinogenesis is discussed. In addition, we found that xanthone derivatives inhibited DNA damage caused by photoexcited riboflavin via the quenching of its excited triplet state. It is thus considered that naturally occurring quenchers including xanthone derivatives may act as novel chemopreventive agents against photocarcinogenesis.  相似文献   

4.
The photosensitized DNA damage caused by dihydroxoP(V)tetraphenylporphyrin (P(V)TPP), a cationic water-soluble porphyrin, was examined. The study of near-infrared emission measurements demonstrated the photosensitized singlet oxygen ((1)O(2)) generation by P(V)TPP (quantum yield: 0.28 in ethanol). The fluorescence quenching of P(V)TPP by DNA showed the electron transfer (ET) from nucleobases to photoexcited P(V)TPP. These results have shown that P(V)TPP has ability to damage DNA through dual mechanisms, (1)O(2) generation and ET. Under aerobic conditions, P(V)TPP photosensitized damage was more severe for single-stranded DNA compared to its double-stranded counterpart. Photoexcited P(V)TPP damaged every guanine residue in single-stranded DNA. HPLC measurements confirmed the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), an oxidized product of 2'-deoxyguanosine, and showed that the yield of 8-oxodGuo in single-stranded DNA is larger than that in double-stranded DNA. The guanine-specific DNA damage and the enhancement in single-stranded DNA suggest that the (1)O(2) generation mainly contributes to the mechanism of DNA photodamage by P(V)TPP. Absorption spectrum measurements suggested the interaction between P(V)TPP and DNA. This interaction is expected to enhance the (1)O(2)-mediated DNA damage since the lifetime of (1)O(2) is very short. On the other hand, for double-stranded DNA, photosensitized damage at consecutive guanines was much less pronounced. Because the consecutive guanines act as a hole trap, this DNA-damaging pattern suggests the partial involvement of photoinduced ET. However, DNA damage by ET was not a main mechanism, possibly due to the reverse ET. In conclusion, P(V)TPP induces guanine specific photooxidation mainly via (1)O(2) generation. The interaction with DNA and the energy level of the photoexcited porphyrin may be advantageous for (1)O(2)-mediated DNA damage rather than ET mechanism.  相似文献   

5.
To characterize fullerenes (C(60) and C(70)) as photosensitizers in biological systems, the generation of active oxygen species, through energy transfer (singlet oxygen (1)O(2)) and electron transfer (reduced active oxygen radicals such as superoxide anion radical O(2)(-)* and hydroxyl radical *OH), was studied by a combination of methods, including biochemical (DNA-cleavage assay in the presence of various scavengers of active oxygen species), physicochemical (EPR radical trapping and near-infrared spectrometry), and chemical methods (nitro blue tetrazolium (NBT) method). Whereas (1)O(2) was generated effectively by photoexcited C(60) in nonpolar solvents such as benzene and benzonitrile, we found that O(2)(-)* and *OH were produced instead of (1)O(2) in polar solvents such as water, especially in the presence of a physiological concentration of reductants including NADH. The above results, together with those of a DNA cleavage assay in the presence of various scavengers of specific active oxygen species, indicate that the active oxygen species primarily responsible for photoinduced DNA cleavage by C(60) under physiological conditions are reduced species such as O(2)(-)* and *OH.  相似文献   

6.
Dithiaporphyrin derivatives as photosensitizers in membranes and cells   总被引:1,自引:0,他引:1  
We synthesized a series of analogues of 5,20-diphenyl-10,15-bis(4-carboxylatomethoxy)phenyl-21,23-dithiaporphyrin (I) as potential photosensitizers for photodynamic therapy (PDT). The photosensitizers differ in the length of the side chains that bind the carboxyl to the phenol at positions 10 and 15 of the thiaporphyrin. The spectroscopic, photophysical, and biophysical properties of these photosensitizers are reported. The structural changes have almost no effect on the excitation/emission spectra with respect to I's spectra or on singlet oxygen generation in MeOH. All of the photosensitizers have a very high, close to 1.00, singlet oxygen quantum yield in MeOH. On the contrary, singlet oxygen generation in liposomes was considerably affected by the structural change in the photosensitizers. The photosensitizers possessing short side chains (one and three carbons) showed high quantum yields of around 0.7, whereas the photosensitizers possessing longer side chains showed smaller quantum yield, down to 0.14 for compound X (possessing side-chain length of 10 carbons), all at 1 microM. Moreover a self-quenching process of singlet oxygen was observed, and the quantum yield decreased as the photosensitizer's concentration increased. We measured the binding constant of I to liposomes and found Kb = 23.3 +/- 1.6 (mg/mL)-1. All the other photosensitizers with longer side chains exhibited very slow binding to liposomes, which prevented us from assessing their Kb's. We carried out fluorescence resonance energy transfer (FRET) measurements to determine the relative depth in which each photosensitizer is intercalated in the liposome bilayer. We found that the longer the side chain the deeper the photosensitizer core is embedded in the bilayer. This finding suggests that the photosensitizers are bound to the bilayer with their acid ends close to the aqueous medium interface and their core inside the bilayer. We performed PDT with the dithiaporphyrins on U937 cells and R3230AC cells. We found that the dark toxicity of the photosensitizers with the longer side chain (X, VI, V) is significantly higher than the dark toxicity of sensitizers with shorter side chains (I, III, IV). Phototoxicity measurements showed the opposite direction; the photosensitizers with shorter side chains were found to be more phototoxic than those with longer side chains. These differences are attributed to the relationship between diffusion and endocytosis in each photosensitizer, which determines the location of the photosensitizer in the cell and hence its phototoxicity.  相似文献   

7.
β-Carbolines (βCs) are a group of alkaloids present in many plants and animals. It has been suggested that these alkaloids participate in a variety of significant photosensitized processes. Despite their well-established natural occurrence, the main biological role of these alkaloids and the mechanisms involved are, to date, poorly understood. In the present work, we examined the capability of three important βCs (norharmane, harmane and harmine) and two of its derivatives (N-methyl-norharmane and N-methyl-harmane) to induce DNA damage upon UV-A excitation, correlating the type and extent of the damage with the photophysical characteristics and DNA binding properties of the compounds. The results indicate that DNA damage is mostly mediated by a direct type-I photoreaction of the protonated βCs after non-intercalative electrostatic binding. Reactive oxygen species such as singlet oxygen and superoxide are not involved to a major extent, as indicated by the only small influence of D(2)O and of superoxide dismutase on damage generation. An analysis with repair enzymes revealed that oxidative purine modifications such as 8-oxo-7,8-dihydroguanine, sites of base loss and single-strand breaks (SSB) are generated by all βCs, while only photoexcited harmine gives rise to the formation of cyclobutane pyrimidine dimers as well.  相似文献   

8.
Based on direct spectroscopic measurements of hole transfer in DNA and quantification of the yield of DNA oxidative damage, consecutive adenine sequences were found to be a good launching site for photosensitizers to inject a hole in DNA, where the following rapid hole transfer between adenines causes a long-lived charge-separated state leading to DNA oxidative damage. According to the results, the essential requisites for an efficient and/or harmful photosensitizer are determined as follows: to be able to oxidize adenine to trigger hole transfer between adenines, and react rapidly with molecular oxygen following its reduction, avoiding charge recombination and making the reaction irreversible. These results will greatly help us to classify photosensitizers harmful to human health, and to design an improved photosensitizer for biochemical applications.  相似文献   

9.
合成了具有分子内电荷转移(ICT)性质的三重态光敏剂分子BDP, 研究了其稳态吸收光谱、 荧光光谱、 荧光寿命、 飞秒/纳秒瞬态吸收光谱及诱导产生单线态氧的能力等性质, 发现强极性溶剂对BDP分子的溶剂化效应降低了其ICT态和第一激发三重态(T1态)的能量, 从而降低了BDP分子单线态氧的产量.  相似文献   

10.
Progress in the photodynamic therapy (PDT) of cancer should benefit from a rationale to predict the most efficient of a series of photosensitizers that strongly absorb light in the phototherapeutic window (650–800 nm) and efficiently generate reactive oxygen species (ROS=singlet oxygen and oxygen‐centered radicals). We show that the ratios between the triplet photosensitizer–O2 interaction rate constant (kD) and the photosensitizer decomposition rate constant (kd), kD/kd, determine the relative photodynamic activities of photosensitizers against various cancer cells. The same efficacy trend is observed in vivo with DBA/2 mice bearing S91 melanoma tumors. The PDT efficacy intimately depends on the dynamics of photosensitizer–oxygen interactions: charge transfer to molecular oxygen with generation of both singlet oxygen and superoxide ion (high kD) must be tempered by photostability (low kd). These properties depend on the oxidation potential of the photosensitizer and are suitably combined in a new fluorinated sulfonamide bacteriochlorin, motivated by the rationale.  相似文献   

11.
采用原子转移自由基聚合(ATRP)法合成了嵌段共聚物聚苯乙烯-聚丙烯酸叔丁酯(PSt-PtBuA), 在酸性条件下水解得到聚苯乙烯-聚丙烯酸(PSt-PAA), 利用核磁共振氢谱(1HNMR)、凝胶渗透色谱(GPC)等对产物进行了表征. PSt-PAA在Tris-HCl缓冲溶液中(pH=7.0)形成临界聚集浓度(CAC)为0.015 g/L的聚集体. PSt-PAA与聚2-甲基丙烯酰氧基乙基三甲基氯化铵(PMADQUAT)可通过静电相互作用形成聚离子复合物(polyion complex, PIC), 当 m(PMADQUAT)/m(PSt-PAA)=3时, 形成的聚离子复合物的CAC为0.005 g/L. 动态光散射(DLS)和透射电镜(TEM)结果表明, 形成聚离子复合物后, 聚集体粒径变小. 聚合物形成聚集体可包载二乙二醇单甲醚修饰的C70(MDG-C70)、原卟啉(PPIX)、四苯基锌卟啉(ZnTPP)和四苯基卟啉(TPP)等光敏剂, 并增强光敏剂在缓冲溶液中的溶解度. 光照条件下, MDG-C70、PPIX、ZnTPP和TPP在聚离子复合物聚集体m(PMADQUAT)/m(PSt-PAA)=3的溶液中的单重态氧量子产率分别是在PSt-PAA聚集体溶液中的1.64、2.63、2.60和2.20倍. 而在缓冲溶液中,由于光敏剂的聚集作用,未能检测到单重态氧的产生。研究结果表明,聚离子复合物聚集体能够包载光敏剂,是提高单重态氧产率的一个有效途径.  相似文献   

12.
Structure–activity relationships have been widely reported for porphyrin and phthalocyanine photosensitizers, but not for phenothiazinium derivatives. Here, four phenothiazinium salts (methylene blue, toluidine blue O, 1,9‐dimethyl methylene blue and the pentacyclic derivative DO15) were used to investigate how the ability to damage membranes is affected by membrane/solution partition, photophysical properties and tendency to aggregation of the photosensitizer. These two latter aspects were studied both in isotropic solutions and in membranes. Membrane damage was assessed by leakage of a fluorescent probe entrapped in liposomes and by generation of thiobarbituric acid‐reactive species (TBARS), while structural changes at the lipid bilayer were detected by small‐angle X‐ray scattering. We observed that all compounds had similar singlet‐oxygen quantum yields in ethanol, but only the photosensitizers that had higher membrane/solution partition (1,9‐dimethyl methylene blue and DO15, the latter having the higher value) could permeabilize the lipid bilayer. Moreover, of these two photosensitizers, only DO15 altered membrane structure, a result that was attributed to its destabilization of higher order aggregates, generation of higher amounts of singlet oxygen within the membranes and effective electron‐transfer reaction within its dimers. We concluded that membrane‐based protocols can provide a better insight on the photodynamic efficiency of the photosensitizer.  相似文献   

13.
Fifteen complexes of hypocrellin A (HA) with rare earth trivalent ions (except Pm3+) along with the complex of HA with Sc3+ were prepared, and their photodynamic activities, including absorption in the phototherapeutic window (600-900 nm); water-solubility; triplet lifetime; generation of reactive oxygen species (ROS), such as singlet oxygen (1O2), superoxide anion radical (O2-*), and hydroxyl radical (OH*); generation of semiquinone anion radical; and affinity to DNA, as well as photosensitized damage on calf thymus DNA (CT DNA), were compared in detail using the UV-visible spectrum, fluorescence spectrum, spin-trapping EPR technique, and laser photolysis technique. All complexes exhibit a red-shifted absorption spectrum, an increased absorbance above 600 nm, improved water solubility, and an enhanced affinity to CT DNA over the parent HA. For ions that possess low-energy excited states, including Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+, and Yb3+, the corresponding complexes show undetectable or nearly undetectable fluorescence, a triplet excited-state lifetime, generation of ROS, and photodamage in CT DNA. In contrast, for ions that do not possess low-energy excited states, including Sc3+, Y3+, La3+, Gd3+, and Lu3+, the corresponding complexes exhibit higher photodamage abilities with CT DNA with respect to HA, benefitting from both their comparable or even higher 1O2 quantum yields and an electrostatic affinity that is higher for DNA than HA.  相似文献   

14.
UVA contributes to skin cancer by solar UV light. Photosensitizers are believed to play an important role in UVA carcinogenesis. We investigated the mechanism of DNA damage induced by photoexcited xanthone (XAN) analogues (XAN, thioxanthone [TXAN] and acridone [ACR]), exogenous photosensitizers, and the relationship between the DNA-damaging abilities and their highest occupied molecular orbital (HOMO) energies. DNA damage by these photosensitizers was examined using 32P-labeled DNA fragments obtained from the p53 tumor suppressor gene. Photoexcited XAN caused DNA cleavage specifically at 5'-G of the GG sequence in the double-stranded DNA only when the DNA fragments were treated with piperidine, suggesting that DNA cleavage is due to base modification with little or no strand breakage. With denatured single-stranded DNA, the extent of XAN-sensitized photodamage was decreased. An oxidative product of G, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo), was formed by photoexcited XAN, and the 8-oxo-dGuo formation was decreased in single-stranded DNA. TXAN and ACR induced DNA photodamage as did XAN, although the order of DNA-damaging ability was XAN > TXAN > ACR. These findings suggest that photoexcited XAN analogues induce nucleobase oxidation at 5'-G of GG sequence in double-stranded DNA through electron transfer. The HOMO energies of these photosensitizers, estimated from ab initio molecular orbital (MO) calculation, decreased in the following order: XAN > TXAN > ACR. Extents of DNA damage increased exponentially with the HOMO energies of XAN analogues. This study suggests that DNA-damaging abilities of photosensitizers can be estimated from their HOMO energies.  相似文献   

15.
IMINIUM SALT BENZOCHLORINS: STRUCTURE-ACTIVITY RELATIONSHIP STUDIES   总被引:1,自引:0,他引:1  
An iminium salt of copper(II) octaethylbenzochlorin (CDS1) is an effective new photosensitizer despite the fact that it does not produce singlet oxygen, does not fluoresce and the triplet state lifetime can only be less than 20 ns. A number of octaethylbenzochlorin derivatives were synthesized in order to determine the structural component(s) that is(are) responsible for the photodynamic action of these new photosensitizers. Studies utilizing the N -(4-[5-nitro-2-furyl]-2-thiazolyl)formamide-induced urothelial tumor revealed that the coexistence of the copper inside the aromatic ring and the iminium group at the meso position are required for the photodynamic effect.  相似文献   

16.
PHOTOTOXIC POTENTIALITIES OF TARTRAZINE: SCREENING TESTS   总被引:1,自引:0,他引:1  
Abstract Tartrazine (TRT) a cosmetics, food and drug additive, was tested with respect to phototoxic potentialities. Although, using the cholesterol technique, TRT did not appear to produce any 1O2 upon visible light irradiation, the EPR spin trapping experiments with 5,5-dimethyl-1-pyrroline-N-oxide, as spin trap, were in favour of activated oxygen species (O2˙, OH˙) and hydrated electron production by photoexcited TRT.
Irradiation of TRT with complementary biological systems (nucleic acids, bacteria, biological membranes) showed that few of them can be damaged by this photosensitizer. Tartrazine could induce a weak deoxyribose degradation but did not produce any DNA strand breaks on isolated φXRFI DNA. Tartrazine was detected as mutagen in the Salmonella microsome (Ames) assay, only in conjunction with visible light. In the presence of photoexcited TRT, erythrocyte membranes were damaged by covalently cross-linking proteins.
The tests developed here seem thus to be suitable for detecting any unwanted phototoxic activity associated with potential photosensitizers.  相似文献   

17.
The type-II photosensitization process is mediated by the formation of singlet oxygen (O2[1deltag]). The short lifetime of this species dictates that chemical reactions with biological substrates can only occur when O2(1deltag) is in very close proximity to the photosensitizer itself. In this study, deuteroporphyrin, a type-II, membrane-localized photosensitizer, was used to generate O2(1deltag) in human lymphoblast WTK-1 cells, and the range of influence was determined by a variety of biological assays. Surprisingly, the initial membrane-confined events were shown, by comet assay, to induce DNA damage in these cells. DNA damage was inhibited both by membrane-localized (alpha-tocopherol acetate) and by cytoplasmic (trolox) free radical scavengers. Comet formation also was inhibited by treatment at low temperature. DNA fragmentation was not influenced by treatment with the pan-caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, showing that apoptosis was not responsible for fragmentation. Taken together, these results show that primary photosensitization reactions involving O2(1deltag), even when tightly confined in extranuclear locations, leads to the production of secondary reactive oxygen species, probably as a result of lipid peroxidation, that can act at greater distances from the photosensitizer itself. These experiments were carried out under conditions where cell survival was significant and raise questions regarding DNA damage and mutagenesis pathways, even when extranuclear O2(1deltag)-generating compounds are used.  相似文献   

18.
Under continuous photolysis at 675 nm, liposomal zinc phthalocyanine associated with nitrosyl ruthenium complex [Ru(NH.NHq)(tpy)NO]3+ showed the detection and quantification of nitric oxide (NO) and singlet oxygen (1O2) release. Photophysical and photochemical results demonstrated that the interaction between the nitrosyl ruthenium complex and the photosensitizer can enable an electron transfer process from the photosensitizer to the nitrosyl ruthenium complex which leads to NO release. Synergistic action of both photosensitizers and the nitrosyl ruthenium complex results in the production of reactive oxygen species and reactive nitrogen species, which is a potent oxidizing agent to many biological tissues, in particular neoplastic cells.  相似文献   

19.
Resistance to antimicrobial drugs is an impending healthcare problem of growing significance. In the post-antibiotic era, there is a huge push to develop new tools for effectively treating bacterial infections. Photodynamic therapy involves the use of a photosensitizer that is activated by the use of light of an appropriate wavelength in the presence of oxygen. This results in the generation of singlet oxygen molecules that can kill the target cells, including cancerous cells and microbial cells. Photodynamic therapy is shown to be effective against parasites, viruses, algae, and bacteria. To achieve high antimicrobial activity, a sufficient concentration of photosensitizer should enter the microbial cells. Generally, photosensitizers tend to aggregate in aqueous environments resulting in the weakening of photochemical activity and lowering their uptake into cells. Nanocarrier systems are shown to be efficient in targeting photosensitizers into microbial cells and improve their therapeutic efficiency by enhancing the internalization of photosensitizers into microbial cells. This review aims to highlight the basic principles of photodynamic therapy with a special emphasis on the use of nanosystems in delivering photosensitizers for improving antimicrobial photodynamic therapy.  相似文献   

20.
Singlet oxygen (1O2) is thought to be the cytotoxic agent in photodynamic therapy (PDT) with current photosensitizers. Direct monitoring of 1O2 concentration in vivo would be a valuable tool in studying biological response. Attempts were made to measure 1O2 IR luminescence during PDT of cell suspensions and two murine tumour models using the photosensitizers Photofrin II and aluminium chlorosulphonated phthalocyanine. Instrumentation was virtually identical to that devised by Parker in the one positive report of in vivo luminescence detection in the literature. Despite the fact that our treatments caused cell killing and tissue necrosis, we were unable to observe 1O2 emission under any conditions. We attribute this negative result to a reduction in 1O2 lifetime in the cellular environment. Quantitative calibration of our system allowed us to estimate that the singlet oxygen lifetime in tissue is less than 0.5 microsecond. Some technical improvements are suggested which would improve detector performance and perhaps make such measurements feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号