首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic voltammetry has been successfully used to study the oxidation of nicotinamide adenine dinucleotide (NADH) at single-wall carbon-nanotube-paste (CNTP) electrodes modified with p-methylaminophenolsulfate (p-MAP) and 3,4-dihydroxybenzaldehyde (3,4-DHB). Diffusion-like behaviour was observed for p-MAP-modified electrodes, and a diffusion coefficient of 2.4×10–6 cm2 s–1 was calculated for p-MAP in the paste. The behaviour of 3,4-DHB-modified CNTP electrodes was typical of that of surface-confined mediators. p-MAP electrocatalytic activity was first checked in solution, and a rate constant of 9.2 mol–1 L s–1 was obtained for the reaction between NADH and the mediator. The p-MAP-modified electrode did not have significant electrocatalytic activity for electro-oxidation of NADH, probably because of the formation of a complex between NADH and the confined mediator. In contrast, the 3,4-DHB-modified electrode had very good NADH electrocatalytic activity, with a heterogeneous rate constant of approximately 20×102 mol–1 L s–1.  相似文献   

2.
Studies on the catalytic reduction of nitrite on carbon electrodes modified with Co(II) tetra-2,3-pyridinoporphyrazine (CoTppa, 1), N,N′,N′′,N′′′-tetramethyltetra-2,3-pyridinoporphyrazine ([CoTm-2,3-tppa]4+, 2) and Co(II) N,N′,N′′,N′′′-tetramethyltetra-3,4-pyridinoporphyrazine ([CoTm-3,4-tppa]4+, 3) are reported. There is a close correspondence between the proximity of the methyl groups to the porphyrazine ring and the catalytic activity of the porphyrazine complexes. Bulk electrolysis gave ammonia and hydroxylamine as some of the products. The catalytic activity of the cationic complex, 3, towards the detection of low concentrations of nitrite (<10−9 M) in water containing sodium sulfate, was compared with the activities of the anionic cobalt(II) tetrasulfophthalocyanine ([CoTSPc]4−, 4) and the mixed [CoIITm-3,4-tppa]4+·[CoTSPc]4− (5) complexes. Complex 5 showed the best catalytic activity of the three in that large currents were obtained for very low concentrations of nitrite.  相似文献   

3.
Voltametrically stable 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS2−) modified electrode was obtained by sol–gel processing of methyltrimethoxysilane based sol with dissolved ABTS2− together with dispersed graphite particles. Next, extracellular laccase from Cerrena unicolor was encapsulated within a thin hydrophilic tetramethoxysilane film on the top the electrode. The obtained ABTS2− modified carbon ceramic electrode exhibits stable voltammetry corresponding to the surface confined oxidation reduction process. The biocatalytic activity of this electrode is similar to that observed when ABTS2− is present in solution.  相似文献   

4.
《Electroanalysis》2017,29(8):1985-1993
Polytyramine (PT) has been electro‐deposited onto multi‐walled carbon nanotube (MWCNT) modified glassy carbon (GC) electrodes via oxidation of tyramine in 0.1 M H3PO4 by cycling the potential over the range of −400 mV to 1300 mV (versus Ag/AgCl). The reactivity of the resulting chemically‐modified electrodes was characterized using cyclic voltammetry in the presence and absence of reduced nicotinamide adenine dinucleotide (NADH). The modified electrodes displayed electrochemical activity due to the formation of quinone species and were catalytically active towards NADH oxidation by lowering the oxidation peak potential by 170 mV compared to the value of the MWCNT modified electrode with a peak potential of 180±10 mV (versus Ag/AgCl). The MWCNT/PT surface was further characterized using SEM and XPS methods, which indicated that a thin polymeric film had been formed on the electrode surface. The present work demonstrates the advantage of using PT as a platform that combines both the immobilization of alcohol dehydrogenase (ADH) and the mediation of NADH oxidation at a low overpotential essential to the design of high performance ethanol biosensors, all within an easily electropolymerizable film. The resulting biosensor displayed an ethanol sensitivity of 4.28±0.06 μA mM−1 cm−2, a linear range between 0.1 mM and 0.5 mM and a detection limit of 10 μM.  相似文献   

5.
NADH electrochemical sensor development has been one of the most studied areas of bioelectroanalysis because of the ubiquity of NAD(P)H based enzymatic reactions in nature. The different solutions proposed are still far from the realisation of the “ideal” NADH sensor and the research area is still challenging. The principles and the recent approaches in NADH electrochemical sensing design are reported in this review. An overview of selected examples and novel sensor materials for the electrocatalysis of NADH is given with emphasis on the appropriate design to obtain improved performances. The literature data taken in consideration has been grouped depending on the strategy used in: surface modified electrodes for NADH sensing, surface redox mediated NADH probes, and bulk modified electrodes for the electrocatalytic oxidation of NADH. A list of already reported dehydrogenase-based biosensors is also given.  相似文献   

6.
The bienzyme electrodes were fabricated by coimmobilization of lactate oxidase (LOD) and lactate dehydrogenase (LDH) onto electrochemically prepared polyaniline (PANI) films. These PANI/LOD/LDH bienzyme electrodes were shown to provide signal amplification by substrate recycling, making it possible to detect l-lactate at lower concentrations (0.1-1 mM). The PANI/LOD/LDH bienzyme electrodes were found to be stable for about 21 d at 4–10°C.  相似文献   

7.
We are interested in investigating the applications of biocatalytic mediated reduction of oxygen by oxygenases in films on electrode surfaces, as such reactions can form the basis for biosensors or biocatalytic fuel cell development. Here we present approaches aimed at improving the stability and signal output of such films. These include selection of oxygen reducing biocatalysts which are active under physiological conditions and development of redox mediators which offer the opportunity to tailor the mediator to each enzyme. It was found that for each enzyme Melanocarpus albomyces laccase (MaL), Trametes hirsutus laccase (ThL) or bilirubin oxidase (MvBOD) it was the biocatalytic films mediated by Os(2,2′-bipyridine)2Cl·PVI that not only generated the highest current densities compared to Os(4,4′-dimethyl-2,2′-bipyridine)2Cl·PVI and Os(4,4′-dichloro-2,2′-bipyridine)2Cl·PVI, but also proved to be the most stable over 48 h. Under physiological conditions electrodes constructed from MvBOD generated the highest initial current densities for each of the osmium redox polymers, however these films proved to be the least stable over 48 h. Stability could be improved using surface pre-treatment.  相似文献   

8.
Human exposure to polychlorobiphenyls (PCBs) in humans was determined by analyzing adipose tissue samples collected in 1996–1997 from two different localities: Siena (Italy) and Concepción (Chile). ΣPCBs was higher in Italian samples than that from Chile (493 and 53 ng/g wet wt., respectively). Thirty-seven different PCB congeners were identified in all samples. The prevailing PCB congeners in both groups were 22′44′5 pentachlorobiphenyl (IUPAC no. PCB 118), 22′344′5′ (PCB-138) and 22′44′55′ (PCB-153) hexachlorobiphenyls and 22′33′44′5 (PCB-170), 22′344′55′ (PCB-180) and 22′34′55′6 (PCB-187) heptachlorobiphenyls. PCB-153 accounted for more than 20% of the total PCB residue in both groups, while the remaining six congeners accounted for approximately 70%. Hexachlorobiphenyls were the most abundant congeners in all samples, with 42% of total residue in those from Italy and 43% in the Chilean samples, followed by heptachlorobiphenyls with 41 and 36% in Italian and Chilean samples, respectively. Average concentrations of non-ortho substituted coplanar congeners were below 1 pg/g wet wt. In the samples from Siena no noticeable differences were observed between the three average coplanar concentrations, while in those from Concepción 33′44′tetrachlorobiphenyl (PCB-77) was much higher than 33′44′pentachlorobiphenyl (PCB-126) and 33′44′55′hexachlorobiphenyl (PCB-169). For each sample the contribution to the total toxic equivalent values (ΣTEQs) of each non-ortho, mono-ortho and di-ortho substituted PCB congeners was assessed. The overall TEQs calculated for the monitored PCBs, were 10.16 pg/g wet wt. in Italian samples and 1.09 pg/g wet wt. in Chileans ones. In both groups the main contribution to ΣTEQs were the di-ortho substituted PCB congeners (Siena: 6.17 pg/g wet wt.; Concepción: 0.56 pg/g wet wt.) and the mono-ortho substituted PCB congeners (Siena: 3.97 pg/g wet wt.; Concepción: 0.50 pg/g wet wt.).  相似文献   

9.
The spirocyclic compounds bis[2′,3′-bis(methoxycarbonyl)-5′,6′,6′ -trimethylspirofluoren-9,4′-(1′-aza-2′-cyclopentene)][1′,5′ -a]indolino[4,5-e]indoline and bis[2-,3′-bis(methoxycarbonyl)-5′,6′,6′ -trimethylspiro-fluoren-9,4′-(1′-aza-2′-cyclopentene)][1′,5′ -a]indolino[7,6-g]indoline exhibit photochromic properties with various half-lifes. The AM1 method was used to correlate the structural and electronic properties, on the one hand, and photochromic properties, on the other, and to explain reasons for the difference in the photochromism of the two compounds.__________Translated from Zhurnal Obshchei Khimii, Vol. 75, No. 4, 2005, pp. 670–673.Original Russian Text Copyright © 2005 by Samsoniya, Trapaidze, Tsikoliya, Machaidze, Esakiya.  相似文献   

10.
Glycerol dehydrogenase (GDH) and lipase have been used for the amperometric determination of glycerol and triglycerides on modified carbon electrodes. Carbon electrodes were modified with adsorbed Meldola Blue, Nile Blue or Toluidine Blue O. Electrochemical oxidation of NADH was realized at 0V vs saturated Ag/AgCl electrode. NADH was produced by the catalytic oxidation of glycerol in the presence of glycerol dehydrogenase immobilized on the surface of an electrode. GDH was adsorbed on the electrode, entrapped in gelatin, immobilized in polylysine gel, or trapped in two types of organic salts. Sensitivity of the electrodes vary from 2 to 9 nA/mM glycerol with steady state achieved in a time of between 20 s and 8 min, depending on the method of immobilization. Triglycerides were determined after a 5 min pre-incubation period in a mixture of lipases with different specificity.  相似文献   

11.
Just like in biological systems , the GAPDH-catalyzed oxidation of aldehyde to carboxylate proceeds in conjunction with 1,4-selective reduction of NAD+ to NADH model compounds [Eq. (1)]. The combination of GAPDH- and LDH-type transfer reactions is also described here as a system mimic for the NAD+/NADH redox cycle in anaerobic glycolysis. GAPDH=D -glyceraldehyde-3-phosphate dehydrogenase, LDH=L -lactate dehydrogenase.  相似文献   

12.
A screen-printed carbon electrode modified with both HRP and LOD (SPCE–HRP/LOD) has been developed for the determination of l-lactate concentration in real samples. The resulting SPCE–HRP/LOD was prepared in a one-step procedure, and was then optimised as an amperometric biosensor operating at [0, −100] mV versus Ag/AgCl for l-lactate determination in flow injection mode. A significant improvement in the reproducibility (coefficient variation of about 10%) of the preparation of the biosensors was obtained when graphite powder was modified with LOD in the presence of HRP previously oxidised by periodate ion (IO4). Optimisation studies were performed by examining the effects of LOD loading, periodation step and rate of the binder on analytical performances of SPCE–HRP/LOD. The sensitivity of the optimised SPCE–HRP/LOD to l-lactate was 0.84 nA L μmol−1 in a detection range between 10 and 180 μMol. The possibility of using the developed biosensor to determine l-lactate concentrations in various dairy products was also evaluated.  相似文献   

13.
Bulk screen-printed electrodes (bSPEs) modified with zirconium phosphate (ZrP) and Meldola blue (MB) and by electrochemical deposition of a Reineckate film (bMBZrPRs-SPEs) have been constructed and used as NADH sensors. Cyclic voltammetric investigation of these bulk electrochemically modified screen-printed electrodes revealed stable catalytic activity in oxidation of the reduced form of the coenzyme nicotinamide adenine dinucleotide (NADH). Flow-injection analysis (FIA) coupled with amperometric detection confirmed the improved stability of the bMBZrPRs-SPEs (10−4 mol L−1 NADH, %RSD = 4.2, n = 90, pH 7.0). Other conditions, for example applied working potential (+50 mV relative to Ag|AgCl), flow rate (0.30 mL min−1) and pH-dependence (range 4.0–10.0) were evaluated and optimized. A glycerol biosensor, prepared by immobilizing glycerol dehydrogenase (GDH) on the working electrode area of a bMBZrPRs-SPE, was also assembled. The biosensor was most stable at pH 8.5 (%RSD = 5.6, n = 70, 0.25 mmol L−1 glycerol). The detection and quantification limits were 2.8 × 10−6 and 9.4 × 10−6 mol L−1, respectively, and the linear working range was between 1.0 × 10−5 and 1.0 × 10−4 mol L−1. To assess the effect of interferences, and recovery by the probe we analyzed samples taken during fermentation of chemically defined grape juice medium and compared the results with those obtained by HPLC.  相似文献   

14.
Very sensitive, low cost and reliable NADH and H2O2 sensors were realised and used for development of enzyme based biosensors. The active surface of the electrodes was modified with a nanocomposite obtained by modification of SWNT with a proper mediator: Meldola Blue (for NADH) and Prussian Blue (for H2O2). Low applied potential of − 50 mV vs. Ag/AgCl reference electrode proved the synergistic effect of nanocomposite materials towards NADH and H2O2 detection. Biosensors for malic acid and alkylphenols have been developed, using mediator-functionalised-SWNT-based electrodes and two different classes of enzymes: NAD+-dependent dehydrogenases and peroxidases. Immobilization of the enzymes was realised using a series of different procedures — adsorption, Nafion membrane, sol–gel and glutaraldehyde, in order to find the best configuration for a good operational stability. A higher sensitivity comparing with other reported biosensors of about 12.41 mA/M·cm2 was obtained for l-malic acid biosensor with enzyme immobilised in Nafion membrane. Phenol, 4-t-octylphenol and 4-n-nonylphenol were used as standard compounds for HRP based biosensor. Fast biosensor response and comparable detection limit with HPLC methods were achieved.  相似文献   

15.
Oxidatively generated damage to DNA frequently appears in the human genome as an effect of aerobic metabolism or as the result of exposure to exogenous oxidizing agents. Due to these facts, it has been decided to present the structural propriety and charge distribution of 5′,8-cyclo-2′-deoxyadenosine/guanosine (cdA, cdG) in their 5′R and 5′S diastereomeric forms. For all points of quantum mechanics studies presented, the density functional theory (DFT) with B3LYP parameters on 6-311++G** basis set level was used. The 2-deoxyribose moiety of cyclopurines has adopted the 0T1 conformation in their cationic, neutral and anionic forms. The natural population analysis (NPA) of charge distribution between purine/2-deoxyribose moieties exhibited positive/positive value for cations, positive/negative for neutral molecules. NPA data for anionic forms showed negative/negative values in gas (exclude (5′S)cdG) and positive/negative in water. The dipole moments of 5′,8-cyclopurine-2′-deoxynucleosides were found as follows: 7.83(5′R)cdG, 6.86(5′S)cdG, 3.99(5′R)cdA, 1.99(5′S)cdA in the gaseous phase, 11.29(5′R)cdG, 9.99(5′S)cdG, 6.44(5′R)cdA, 4.14(5′S)cdA in the aqueous phase.  相似文献   

16.
The kinetics of the oxidation of ferrocyanide, catechol and tiron at carbon electrodes covered with Nafion films containing tris(2,2′-bipyridyl)iron(III) were studied by rotating-disc methods. Under conditions in which these reactions were confined to the film-solution interface, limiting currents were observed that were independent of both the substrate concentration and the electrode rotation rate. This saturated behaviour was interpreted in terms of the rate of electron transfer within the precursor complex formed between the dissolved substrate and the limited number of active mediator sites accessible on the coating surface.  相似文献   

17.
The method of capillary isotachophoresis with conductivity detection was applied for the determination of the physico-chemical characteristics (conditional stability constants log β′) of holmium and yttrium complexes with DTPA (diethylenetriaminepentaacetic acid) and DOTA (1,4,7,10-tetraazadodecane-N,N′,N″,N-tetraacetic acid). The log β′ determination is based on the linear relation between the stability constants of lanthanide–DTPA (lanthanide–DOTA) complexes and the reduction of the zone of the complex owing to the bleeding phenomena (liberating free metal ion). The stability constants calculated using this relationship are comparable with the literary data obtained by other methods for both holmium (log βHo–DTPA=21.9, log βHo–DOTA=24.5) and yttrium complexes (log βY–DTPA=21.2, log βY–DOTA=24.4). Capillary isotachophoresis was applied for the determination of the optimum composition of the reaction mixture (metal:ligand ratio) as well.  相似文献   

18.
The crystal and molecular structures of the 3′,5′-di-O-acetyl-N(4)-hydroxy-2′-deoxycytidine molecule and its 5-fluoro congener have been determined by X-ray single crystal diffraction. The 3′,5′-di-O-acetyl-N(4)-hydroxy-5-fluoro-2′-deoxycytidine molecule crystallizes in the space group C2 with the following unit cell parameters: a = 21.72 Å, b = 8.72 Å, c = 8.61 Å, and β = 90.42. 3′,5′-di-O-acetyl-N(4)-hydroxy-2′-deoxycytidine also belongs to the monoclinic space group C2 and the unit cell parameters are: a = 39.54 Å, b = 8.72 Å, c = 22.89 Å, and β = 95.26. The non-fluorine analogue demonstrates a rare example of crystal structure with five symmetry-independent molecules in the unit cell. All the molecules in both crystal structures have the sugar residue anti oriented with respect to the base, as well as have the N(4)-OH residue in cis conformation relatively to the N(3)-nitrogen atom. In addition to the molecular geometries from X-ray experiment, the optimized molecular geometries have been obtained with the use of theoretical ab initio calculations at the RHF/6-31G(d) level. The corresponding geometric parameters in the molecules of 3′,5′-di-O-acetyl-N(4)-hydroxy-2′-deoxycytidine and its 5-fluoro congener have been compared. The differences including the C(5)=C(6) bond shortening and C(4)—C(5)—C(6) angle widening in the fluorine analogue are discussed in this paper in relation to the molecular mechanism of enzyme, thymidylate synthase, inhibition by N(4)-hydroxy-2′-deoxycytidine monophosphate and its 5-fluoro congener.  相似文献   

19.
Horse heart cytochrome c (cyt c) was adsorbed on the binary self-assembled monolayers (SAMs) composed of thioctic acid (T-COOH) and thioctic amide (T-NH2) at gold electrodes via electrostatic interaction. The cyt c adsorbed on the modified gold electrode exhibited well-defined reversible electrochemical behavior in 10 mM phosphate buffer solution (PBS, pH 7.0). The surface concentration (Γ) of electroactive species, cyt c, on the binary SAMs was higher than that in single-component SAMs of T-COOH, and reached a maximum value of 9.2 × 10−12 mol cm−2 when the ratio of T-COOH to T-NH2 in adsorption solution was of 3:2, and the formal potential (E0=(Epa+Epc)/2) of cyt c was −0.032 V (vs. Ag|AgCl (3 M NaCl)) in a 10 mM PBS. The interaction between cyt c and the binary SAMs made the E0 shift negatively when compared with that of cyt c in solution (+0.258 V vs. NHE, i.e., +0.058 V vs. Ag|AgCl (3 M NaCl)). The fractional coverage of bound cyt c was a 0.64 theoretical monolayer. The standard electron transfer rate constant of cyt c immobilized on the binary SAMs was also higher than that on single-component SAMs of T-COOH, and the maximum value of 15.8 ± 0.6 s−1 was obtained when the ratio of T-COOH to T-NH2 in adsorption solution was at 3:2. The results suggest that the electrode modified with the binary SAMs functions better than the electrode modified with single-component SAMs of T-COOH.  相似文献   

20.
Formate dehydrogenase (FDH) has been widely used for the regeneration of the reduced nicotinamide adenine dinucleotide (NADH). To utilize nicotinamide cytosine dinucleotide (NCD) as a non-natural redox cofactor, it remains challenging as NCDH, the reduced form of NCD, has to be efficiently regenerated. Here we demonstrate successful engineering of FDH for NCDH regeneration. Guided by the structural information of FDH from Pseudomonas sp. 101 (pseFDH) and the NAD–pseFDH complex, semi-rational strategies were applied to design mutant libraries and screen for NCD-linked activity. The most active mutant reached a cofactor preference switch from NAD to NCD by 3700-fold. Homology modeling analysis showed that these mutants had reduced cofactor binding pockets and dedicated hydrophobic interactions for NCD. Efficient regeneration of NCDH was implemented by powering an NCD-dependent D -lactate dehydrogenase for stoichiometric and stereospecific reduction of pyruvate to D -lactate at the expense of formate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号