首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The geometric phase (GP) for bipartite systems in transverse external magnetic fields is investigated in this paper. Two different situations have been studied. We first consider two non-interacting particles. The results show that because of entanglement, the geometric phase is very different from that of the non-entangled case. When the initial state is a Werner state, the geometric phase is, in general, zero and moreover the singularity of the geometric phase may appear with a proper evolution time. We next study the geometric phase when intra-couplings appear and choose Werner states as the initial states to entail this discussion. The results show that unlike our first case, the absolute value of the GP is not zero, and attains its maximum when the rescaled coupling constant J is less than 1. The effect of inhomogeneity of the magnetic field is also discussed.  相似文献   

2.
The Berry phase in a bipartite system described by the XXZ model is studied in this Letter. We calculate the Berry phase acquired by the bipartite system as well as the geometric phase gained by each subsystem. The results show that as the coupling constants tend to infinity all geometric phases go to zero, this confirms the prediction given by us previously [X.X. Yi, L.C. Wang, T.Y. Zheng, Phys. Rev. Lett. 92 (2004) 150406] for bipartite systems with a specific subsystem–subsystem coupling.  相似文献   

3.
By analyzing an instructive example, for testing many concepts and approaches in quantum mechanics, of a one-dimensional quantum problem with moving infinite square-well, we define geometric phase of the physical system. We find that there exist three dynamical phases from the energy, the momentum and local change in spatial boundary condition respectively, which is different from the conventional computation of geometric phase. The results show that the geometric phase can fully describe the nonlocal character of quantum behavior.  相似文献   

4.
Xin Li 《Physics letters. A》2008,372(30):4980-4984
In virtue of the quantum invariant theory, we obtain the rigorous solution of the isotropic bipartite system in rotational magnetic fields, based on which the general expression of the noncyclic geometric phase is worked out and the entanglement dependence of the noncyclic geometric phase in this model is investigated. We show that the influence of the coupling on noncyclic geometric phase depends on the initial condition of the system. We also show that when the magnetic fields are stationary, there is a more general class of states existed of which the noncyclic geometric phase could be interpreted solely in terms of the solid angle enclosed by the geodesically closed curve on a two-sphere parameterized by the evolving Schmidt coefficients.  相似文献   

5.
We study the geometric phase of an open two-level quantum system under the influence of a squeezed, thermal environment for both non-dissipative as well as dissipative system-environment interactions. In the non-dissipative case, squeezing is found to have a similar influence as temperature, of suppressing geometric phase, while in the dissipative case, squeezing tends to counteract the suppressive influence of temperature in certain regimes. Thus, an interesting feature that emerges from our work is the contrast in the interplay between squeezing and thermal effects in non-dissipative and dissipative interactions. This can be useful for the practical implementation of geometric quantum information processing. By interpreting the open quantum effects as noisy channels, we make the connection between geometric phase and quantum noise processes familiar from quantum information theory.  相似文献   

6.
In this paper, we investigate the geometric phase of a composite system which is composed of two spin- particles driven by a time-varying magnetic field. Firstly, we consider the special case that only one subsystem driven by time-varying magnetic field. Using the quantum jump approach, we calculate the geometric phase associated with the adiabatic evolution of the system subjected to decoherence. The results show that the lowest order corrections to the phase in the no-jump trajectory is only quadratic in decoherence coefficient. Then, both subsystem driven by time-varying magnetic field is considered, we show that the geometric phase is related to the exchange-interaction coefficient and polar angle of the magnetic field.  相似文献   

7.
We study the effect of Kerr medium on the intrinsic decoherence of a system which consists of two two-level atoms and a optical cavity. The entanglement of the system is calculated by making use of concurrence. Our results show that the intrinsic decoherence is very sensitive to the nonlinear coupling constant of Kerr medium. Both the oscillation period and the amplitude of the concurrence increase with the increasing nonlinear coupling constant.  相似文献   

8.
Utilizing the concurrence and the quantum discord as the measure method, in this paper we compare and investigate the dynamic evolution features of quantum correlations of coupled qubits in non-Markovian process. We focus attention on decoherence effect influences the stability of quantum correlations. The investigation results show that because of the decoherence influence between the system and environment, the concurrence always evolves with time in oscillation form in the way of deaths and survivals, however, the quantum discord time evolution does not appear the deaths and survivals. The quantum discord survives obviously longer than concurrence, which indicates that quantum discord has a stronger ability to resist decoherence than entanglement. Through regulating and controlling the purity and entanglement of the initial quantum state, we can effectively suppress the decay of the quantum correlations, which is advantaged to complete the quantum information processing.  相似文献   

9.
In the presence of degenerate two-photon transitions the problem of the interaction between two two-level atoms and a single-mode is considered. Near resonance case, a closed form of the analytic solution for the wave function is obtained. The entanglement between an atom and field in the interacting system is studied by using the change in atomic and field entropies. The relationship between entropy changes and concurrence entanglement is discussed. Our results show that the behavior of the entropy change in agreement with the behavior of the concurrence to measure the entanglement between two subsystem structures.  相似文献   

10.
In this paper we investigate the Berry phase in Tavis-Cummings model in the rotating wave approximation. The dipole-dipole interaction between the atoms is considered. The eigenfunctions of the system are obtained and thus the Berry phase is evaluated explicitly in terms of the introduction of the phase shift. It is shown that the Berry phase can be easily controlled by the atom-cavity coupling strength, the cavity frequency detuning, which can be important in applications in geometric quantum computing.  相似文献   

11.
This communication is an enquiry into the circumstances under which concurrence and phase entropy methods can give an answer to the question of quantum entanglement in the composite state when the photonic band gap is exhibited by the presence of photonic crystals in a three-level system. An analytic approach is proposed for any three-level system in the presence of photonic band gap. Using this analytic solution, we conclusively calculate the concurrence and phase entropy, focusing particularly on the entanglement phenomena. Specifically, we use concurrence as a measure of entanglement for dipole emitters situated in the thin slab region between two semi-infinite one-dimensionally periodic photonic crystals, a situation reminiscent of planar cavity laser structures. One feature of the regime considered here is that closed-form evaluation of the time evolution may be carried out in the presence of the detuning and the photonic band gap, which provides insight into the difference in the nature of the concurrence function for atom-field coupling, mode frequency and different cavity parameters. We demonstrate how fluctuations in the phase and number entropies affected by the presence of the photonic-band-gap. The outcomes are illustrated with numerical simulations applied to GaAs. Finally, we relate the obtained results to instances of any three-level system for which the entanglement cost can be calculated. Potential experimental observations in solid-state systems are discussed and found to be promising.  相似文献   

12.
The effects of atmospheric turbulence on the entanglement of spatial two-qubit states that are prepared using the signal and idler photons produced by parametric down-conversion are studied. Utilizing the non-Kolmogorov model for atmospheric turbulence and Rytov approximation method, we quantify the effects of atmospheric turbulence on the entanglement of the two-qubit state in terms of Wootters's concurrence. Our results show that the effects of the zenith angle of communication channel and the outer scale of turbulence on the concurrence of a spatial two-qubit state can be ignored and the smaller inner scale of turbulence, the smaller refractive-index power α, the shorter wavelength of beams and the longer propagation distance will lead to the larger fluctuations of the concurrence of a spatial two-qubit state.  相似文献   

13.
Shot noise for entangled and spin-polarized states in a four-probe geometric setup has been studied by adding two rotating magnetic fields in an incoming channel. Our results show that the noise power oscillates as the magnetic fields vary. The singlet, entangled triplet and polarized states can be distinguished by adjusting the magnetic fields. The Berry phase can be derived by measuring the shot noise power.  相似文献   

14.
We calculate the geometric phase of a spin-1/2 particle coupled to an external environment comprising N spin-1/2 particle in the framework of open quantum systems. We analyze the decoherence factor and the deviation of the geometric phase under a nonunitary evolution from the one gained under an unitary one. We show the dependence upon the system's and bath's parameter and analyze the range of validity of the perturbative approximation. Finally, we discuss the implications of our results.  相似文献   

15.
By investigating a particle motion in a three-dimensional potential barrier with moving boundary, we find that due to an alteration of boundary conditions, the wave function pick up an additional nonlocal phase factor independent on the dynamics of physical system. By compare the nonlocal phase with the geometric phase of the physical system, furthermore, we find that the nonlocal feature of quantum behavior can fully be described by its geometric phase.  相似文献   

16.
We study the dynamic evolution of quantum correlation of two interacting coupled qubits system in non-Markov environment, and quantify the quantum correlation using concurrence and quantum discord. We find that although both of them are physical quantities which measure the system characteristics of the quantum correlations, the quantum discord is more robust than concurrence, since it can keep a positive value even when the ESD happens. The quantum correlation of quantum system not only depends on the initial state but also strongly depends on the coupling ways between qubits and environment. For the given initial state, by keeping the coupling between qubits and environment in completely symmetric, we can completely avoid the effect the decoherence influenced on the quantum correlation and effectively prolong the survival time of quantum discord and concurrence. We also find that the stronger the interaction between qubits is, the more conducive the death of the quantum correlation is resisted.  相似文献   

17.
It is shown that geometric phases and entanglement may fail to detect level crossings for two qubits with XY interaction. The rotating magnetic field produces a magnetic monopole sphere like conducting spheres in that only a ground state evolving adiabatically outside the sphere acquires a geometric phase.  相似文献   

18.
The quantum phase transition in the isotropic XY chain with three-site interaction has been studied by calculating the quantum discord, classical correlation, and concurrence measuring entanglement. It is found that the quantum discord is a better choice than concurrence to signal the presence of the quantum phase transition in this model, since that for next-nearest neighbor spins the derivative of the quantum discord still exhibits singularity at the critical point while there is no more entanglement.  相似文献   

19.
The ground state entanglement in an isotropic three-qubit transverse XY chain with energy current is analysed. A quantum phase transition from a no-energy-current phase to energy-current phase is found when the magnetic field changes. It has also been found that the ground state changes in company with the quantum phase transition.  相似文献   

20.
We study an analytically solvable model for decoherence of a two spin system embedded in a large spin environment. As a measure of entanglement, we evaluate the concurrence for the Bell states (Einstein-Podolsky-Rosen pairs). We find that while for two separate spin baths all four Bell states lose their coherence with the same time dependence, for a common spin bath, two of the states decay faster than the others. We explain this difference by the relative orientation of the individual spins in the pair. We also examine how the Bell inequality is violated in the coherent regime. Both for one bath and two bath cases, we find that while two of the Bell states always obey the inequality, the other two violate the inequality at early times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号