首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The absorption coefficient of acoustic materials can be measured either in the frequency or the time domain. At normal incidence, a sample of the material is fitted within an impedance tube and the absorption coefficient is calculated in the frequency domain from the measurement of the transfer function between two microphones [ISO 10534-2. Acoustics - determination of sound absorption coefficient and impedance in impedance tubes - Part 2: transfer function method. ISO, Geneva, Switzerland; 1996]. When the acoustic material must be characterized at oblique incidence or in situ (noise barriers, for instance) the absorption coefficient is calculated from measurements of the loudspeaker-microphone impulse response in the time domain, both in free field and in front of the sample [CEN/TS 1793-5. Road traffic noise reduction devices - test method for determining the acoustic performance - Part 5: intrinsic characteristics - in situ values of sound reflection and airborne sound insulation. CEN, Brussels, Belgium; 2003, ISO 13472-1. Acoustic measurement of sound absorption properties of road surfaces in situ - Part I: extended surface method. ISO, Geneva, Switzerland; 2002]. Since the absorption is an intrinsic property of the acoustic material, its measurement in either domain must provide the same result. However, this has not been formally demonstrated yet. The aim of this paper is to carry out a comparison between the absorption coefficient predicted by the impedance model of a Microperforated Insertion Unit and the absorption coefficient predicted from a simulated reflection trace taken into account the finite length of the time window.  相似文献   

2.
In a recent paper by the present author the effect of finite structural connections on the sound reduction index of double walls was predicted by modifying a model based on the transfer matrix technique. However, the model did not include any means to account for the flexibility of the studs; they were assumed to be of infinite stiffness. Based on data for the effective stiffness of flexible steel studs, the model is extended to take account of this flexibility. A number of comparisons are performed, mainly with the measured sound reduction index of lightweight double walls with gypsum boards. Cases include walls with cavity filling as well as with empty (air-filled) cavities. In the latter cases, the energy losses of the cavity are simulated using a model of a porous layer with a minute flow resistivity. Predicted results compare favourably with measurement results. It is assumed that different basic types of studs, i.e. other than the TC-type simulated here may successfully be included in the model.  相似文献   

3.
水声测量用声脉冲瞬态抑制方法的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
陈毅  袁文俊  赵涵 《应用声学》2002,21(4):10-15,48
脉冲声技术是一种很常用的水声测量技术,但由于脉冲声存在着瞬态过程,严重影响了它在低频下的使用,本文中研究的水声测量用声脉冲瞬态抑制方法,通过瞬态抑制等效消除换能器的瞬态过程,从而为在有限尺寸水域内扩展水声测量低频限创造了条件。  相似文献   

4.
针对现有方法对材料吸声系数进行现场测量时存在低频测量误差大的问题,本文提出了一种利用扬声器线阵列对材料吸声系数进行现场测量的新方法。该方法使用基于能量比值约束的最小二乘法在待测材料表面进行平面波声场重建并结合双传声器传递函数法对材料的吸声系数进行测量。数值仿真表明在100~1600 Hz频率范围内,新方法在未加约束时能够对材料的吸声系数进行准确测量。在半消声室中利用新方法测量了三聚氰胺泡沫的吸声系数,分析了能量比值约束值对测量结果的影响,并和阻抗管以及其它两种现场测量方法的测量结果进行了对比。结果表明该方法能够对吸声材料在160~1600 Hz频段内的吸声系数进行准确测量,并且相较于现存的现场测量方法,新方法具有更低的测量频率下限。  相似文献   

5.
In this paper, a numerical method is presented to calculate sound radiant efficiency and radiant modes of arbitrary shape structures. Some methods have been proposed to compute sound radiant efficiencies and sound radiant modes of plates and beams. However, there is not a valid method to calculate for arbitrary shape structures except for measurement at the present time. The method proposed can predicate the sound radiant efficiencies and the sound radiant modes for arbitrary shape structures by boundary element method (BEM) and general eigenvalue decomposition. The validity of this method is demonstrated by two numerical examples of pulsating sphere and radiation cube.  相似文献   

6.
多孔弹性介质三层夹心板的隔声性能研究   总被引:2,自引:0,他引:2       下载免费PDF全文
陈卫松  邱小军 《应用声学》2008,27(2):118-124
应用Biot关于流体饱和多孔弹性介质的声传播理论,采用传递矩阵的分析方法,就复合多孔弹性材料夹心三层板在不同结构情况下的隔声性能进行了理论研究和实验分析,并与同等条件下双层夹心板的隔声性能进行了比较。数值计算和实验结果均表明,与双层夹心板相比,三层夹心板在中高频段隔声性能有明显优势,但低频段隔声性能有一定程度上的下降。研究还表明不同结构的复合三层夹心板在隔声效果上也各有特色。  相似文献   

7.
A novel signal processing method is proposed for sound field recording and reproduction using multiple parallel linear microphone and loudspeaker arrays. In sound field recording and reproduction, the problem is how to calculate the transfer filters that transform the signals recorded by microphones into the driving signals of the loudspeakers. The proposed method is based on the spatial Fourier transform in the horizontal angle combined with the least squares (LS) approach in the elevation angle. In the proposed method, the signals recorded by each linear microphone array and those that drive each loudspeaker array are decomposed into the wavenumber domain by the spatial Fourier transform in the horizontal direction. The transfer filters are then calculated by the LS approach in the wavenumber domain. As a result, the size of the matrix of each transfer function in the wavenumber domain is much smaller than that of the conventional LS approach in the temporal frequency domain (LSTF), and well-conditioned stable transfer filters can be obtained with low computational cost without regularization. Computer simulation results show that the proposed method reconstructed a sound field around the control points as accurately as the conventional LSTF.  相似文献   

8.
1.TntroductionMostprob1emsofsolvingsoundficlds,suchassoundpressuredistributionsinroomsareclassiia1.lllIn10wfrequencyrange,wavemotionmethodisapplied.Inthemethod,thenorma1modesofroomaresolvedandthensummeduptocvaluatetheirunknownamplitudesbymatchingsoundsource.Inhighfrequencyrange,thenumberofnormalmodesneedcdisnumer0usandtogetfina1solutionwouldbeimpossiblebecauseofthetimeconsumptionincomputation.Hence,ther0omacousticsbasedongeometri-calacousticsandthestatisticswasdevcloped.Thewavemotionmethodcan…  相似文献   

9.
毛崎波 《应用声学》2011,30(2):90-97
以简支矩形板为例,分析结构振动模态之间的耦合对声功率的影响。通过对声功率传递矩阵计算方法的改进,得到计算声功率传递矩阵对角元素和非对角元素(模态耦合项)的解析解,并进行数值计算和分析。所得解析解结果同前人发表的数值解非常吻合。  相似文献   

10.
实验室中水声材料声学参数的测量主要在水声声管中进行。管内平面波声速是正确测量这些参数的基础。该文提出一种基于四水听器结合不同边界的测量充水弹性管中声速的新方法。该方法利用4个固定位置处的水听器,采用最小二乘的方法,使得两组水听器分别得到的声管末端入射波声压差值的平方最小的声速即为管内平面波声速。该方法利用单频信号,在每一频率点均可测得声速,可以在任一种声管末端边界下进行测量,同时无需知道各水听器到边界的精确距离,在文中的3种边界下声速测量结果具有很好的一致性,实验操作简单、误差很小。该方法的仿真结果与管内声速的理论值吻合得很好,同时实验测量结果与仿真值之间的误差很小,证明了方法的准确性以及鲁棒性,为声管声速测量提供一个很好的思路。  相似文献   

11.
A method is formulated for the identification of an unknown physical parameter of a fluid-filled pipe using the measurement of sound speed in the pipe. The method uses a simple formula which provides the relationship between the sound speed and a few physical parameters of the pipe: thickness, diameter, wall material constants and fluid constants. Once the sound speed in the pipe is measured, the simple formula can be used to extract one of the unknown parameters providing the remaining ones are known.The sound speed in the pipe is measured using a 3-transducer array. In order to demonstrate the potential of the technique the results of several measurements obtained in a water-filled steel pipe are presented.The required accuracy of the measurement of sound speed and of the specification of known parameters is analysed. The accuracy depends on the unknown parameter which is to be identified. For example, if the pipe thickness is the unknown parameter, the other parameters have to be known within a very narrow margin of error. On the contrary, if the fluid properties have to be identified the needed accuracy of known parameters gets much lower.  相似文献   

12.
An experimental implementation of a global sound equalization method in a rectangular room using active control is described in this paper. The main purpose of the work has been to provide experimental evidence that sound can be equalized in a continuous three-dimensional region, the listening zone, which occupies a considerable part of the complete volume of the room. The equalization method, based on the simulation of a progressive plane wave, was implemented in a room with inner dimensions of 2.70 m × 2.74 m × 2.40 m. With this method, the sound was reproduced by a matrix of 4 × 5 loudspeakers in one of the walls. After traveling through the room, the sound wave was absorbed on the opposite wall, which had a similar arrangement of loudspeakers, by means of active control. A set of 40 digital FIR filters was used to modify the original input signal before it was fed to the loudspeakers, one filter for each transducer. The optimal arrangement of the loudspeakers and the maximum frequency that can be equalized is analyzed theoretically in this paper. The presented experimental results show that sound equalization was possible from 10 Hz to approximately 425 Hz in the listening zone. A flat frequency response with deviations within ±5 decibels from the desired value was achieved. A higher demanding performance with deviations within ±1.5 decibels from a flat frequency response was attained in the interval between 20 Hz and 280 Hz. At the same time, the impulse response was quite well approximated to a delayed delta function in the listening zone. Examples of the spatial distribution of the sound field are also shown.  相似文献   

13.
基于高速列车减振降噪需求,本文应用Biot提出的多孔弹性介质声传播理论,采用传递矩阵法理论推导了典型分层结构的隔声量计算公式,给出了空气层与多孔材料对分层复合结构隔声特性的影响。将传递矩阵与遗传算法相结合,对特定中低频段内的复合结构隔声特性进行了优化。研究结果表明:空气层和多孔材料有助于分层复合结构隔声量的提高,特别是空气层对低频隔声有很好的促进作用,另外空气层与多孔材料的分配情况也影响着隔声效果。含有空气层的复合结构在提高隔声量的同时降低了结构的总体重量,实现了高速列车隔声材料低能耗和轻量化的设计目标。  相似文献   

14.
The performance of an ultrasound reactor chamber relies on the sound pressure level achieved throughout the system. The active volume of a high frequency ultrasound chamber can be determined by the sound pressure penetration and distribution provided by the transducers. This work evaluated the sound pressure levels and uniformity achieved in water by selected commercial scale high frequency plate transducers without and with reflector plates. Sound pressure produced by ultrasonic plate transducers vertically operating at frequencies of 400 kHz (120 W) and 2 MHz (128 W) was characterized with hydrophones in a 2 m long chamber and their effective operating distance across the chamber’s vertical cross section was determined. The 2 MHz transducer produced the highest pressure amplitude near the transducer surface, with a sharp decline of approximately 40% of the sound pressure occurring in the range between 55 and 155 mm from the transducer. The placement of a reflector plate 500 mm from the surface of the transducer was shown to improve the sound pressure uniformity of 2 MHz ultrasound. Ultrasound at 400 kHz was found to penetrate the fluid up to 2 m without significant losses. Furthermore, 400 kHz ultrasound generated a more uniform sound pressure distribution regardless of the presence or absence of a reflector plate. The choice of the transducer distance to the opposite reactor wall therefore depends on the transducer plate frequency selected. Based on pressure measurements in water, large scale 400 kHz reactor designs can consider larger transducer distance to opposite wall and larger active cross-section, and therefore can reach higher volumes than when using 2 MHz transducer plates.  相似文献   

15.
This study developed a thermal transfer printing (TTP) technique to fabricate a carbon nanotubes (CNTs) stiffened speaker diaphragm. The self-developed TTP stiffening technique does not require a high curing temperature that decreases the mechanical property of CNTs. Therefore, the inherent strength of CNTs was preserved. In addition to increasing the stiffness of diaphragm substrate, this technique alleviates the middle and high frequency attenuation associated with the sound pressure curve of a speaker, thereby smoothing the sound pressure curve and achieving a full sound range as well as reducing bass distortion and enhancing treble clarity. Furthermore, the TTP technique can stiffen a localized area on a diaphragm substrate, thus increasing diaphragm stiffness without markedly raising diaphragm weight. The Taguchi quality engineering method was applied to identify the optimal process parameters (i.e., transfer area, stiffening pattern, coating layers, and transfer temperature). Finally, the optimal process parameters were employed to fabricate a stiffened diaphragm, which was then assembled onto a speaker. The result indicated that the stiffened diaphragm improved the smoothness of the sound pressure curve for the speaker, which produced a mid-frequency dip difference (ΔdB) of 1.9 dB and an attenuation peak frequency (fpeak) of 4220 Hz.  相似文献   

16.
The sound transmission loss (STL) of finite lightweight multilayered structures with thin air layers is studied in this paper. Two types of models are used to describe the vibro-acoustic behavior of these structures. Standard transfer matrix method assumes infinite layers and represents the plane wave propagation in the layers. A wave based model describes the direct sound transmission through a rectangular structure placed between two reverberant rooms. Full vibro-acoustic coupling between rooms, plates, and air cavities is taken into account. Comparison with double glazing measurements shows that this effect of vibro-acoustic coupling is important in lightweight double walls. For infinite structures, structural damping has no significant influence on STL below the coincidence frequency. In this frequency region, the non-resonant transmission or so-called mass-law behavior dominates sound transmission. Modal simulations suggest a large influence of structural damping on STL. This is confirmed by experiments with double fiberboard partitions and sandwich structures. The results show that for thin air layers, the damping induced by friction and viscous effects at the air gap surfaces can largely influence and improve the sound transmission characteristics.  相似文献   

17.
The transfer matrix technique is an efficient tool for calculating sound transmission through multilayered structures. However, due to the assumption of infinite size layers important discrepancies may be found between predicted and experimental data. The spatial windowing technique introduced by Villot et al. [Predicting the acoustical radiation of finite size multi-layered structures by applying windowing on infinite structures, Journal of Sound and Vibration 245 (2001) 433-455] has shown to give data much closer to measurement results than other measures, such as limiting the maximum angle of incidence when integrating to obtain the sound reduction index for diffuse incidence. Using a two-dimensional spatial window, also including the azimuth angle implies, however, that two double numerical integrations must be performed. As predicted results are compared with laboratory data, where the aspect ratio of the test object is required to be less than 1:2, a simplified procedure may be applied involving two single integrals only. It is shown that the accuracy in the end result may in practice be maintained by this simplified procedure.  相似文献   

18.
在传统单一孔隙率多孔材料中引入宏观尺度的周期性梯度穿缝结构设计,构造出梯度穿缝型双孔隙率多孔材料,其包含多孔材料基体微孔尺度与穿缝尺度两个尺度。采用分层等效的理论建模方法,将复杂梯度渐变问题变为多层均匀等效层叠加问题。针对不同特征尺寸的多孔材料薄层,分别采用低、高两种渗透率对比度双孔隙率理论,给出了其等效密度和动态压缩系数,再应用传递矩阵方法得到了相邻薄层之间的声压和质点速度传递关系并求得其表面声阻抗,从而建立了梯度穿缝型双孔隙率多孔材料的吸声理论模型。发展了多尺度材料声学有限元数值模型,在所考虑的100~3000 Hz频段范围内数值模拟结果完全吻合理论模型结果。理论与模拟分析了多尺度结构参数对双孔隙率多孔材料吸声性能的影响,结果表明引入多尺度梯度结构设计能够显著提高单一孔隙率多孔材料的吸声性能,且穿缝尺度比穿缝梯度影响更为显著;精细数值模拟获得的声压和能量密度分布云图揭示了多尺度结构设计的吸声增强机制。该工作可用于指导双孔隙率多孔材料的多尺度结构设计,从而提高多孔材料的中低频吸声性能。   相似文献   

19.
《Applied Acoustics》1987,22(3):203-212
In a well known textbook on structure-borne sound by Cremer et al., a formula for estimating the sound power emitted from a finite, baffled and point-excited plate is derived. The steps used in this derivation can be made the basis of a general estimation method. Such a method is described in this paper. This general method can be applied to estimate the sound power emitted from finite, baffled plates with any type of prescribed excitation. The method has been applied to a test case and the results compared with experiments. The agreement between theory and measurement is satisfactory and it seems that the suggested method should be useful in noise control work.  相似文献   

20.
《Applied Acoustics》1986,19(1):61-74
When designing buildings with a maximum of sound insulation, it is important to know the different sound transmission paths in building structures, which are often complex. A direct measurement of the structure-borne sound intensity has been tried earlier on thin-plate constructions in laboratory set-ups. In this investigation an equivalent technique has been tried on practical building constructions, and the results appear to be promising even on relatively thick and heavy concrete walls with normal junctions to the surrounding constructions. The technique uses normal sound intensity measuring equipment.The experimental work was carried out in a specially designed flanking transmission laboratory during the author's stay at the French Building Research Establishment, CSTB, Grenoble.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号