首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A problem of generation of nonlinear unsteady waves on the surface of an ideal liquid in an infinitely deep fluid due to the motion of a submerged elliptic cylinder is considered. The initial formulation of the problem is reduced to an integrodifferential system of equations for the function defining the free surface shape and for the normal and tangential components of velocity on the free surface. The small-time asymptotics of the solution is constructed for the case of cylinder motion with a constant acceleration from the state at rest.  相似文献   

2.
3.
The criteria for the onset of thermocapillary convection in a horizontal radiating fluid layer heated by an incident thermal radiative energy source are determined. The fluid layer is an absorbing and isotropically scattering medium confined between a free upper surface and an insulated rigid lower surface. Linear analysis is performed on the continuity, momentum, energy, and approximate radiative equations. The resulting disturbance equations are solved using a numerical optimization technique to obtain the eigenvalues governing the onset of convective motion. The influence of thermal radiation on the critical Marangoni number is examined. Attention is drawn to the physical significance of the heat transfer mode, gravitational force, the scattering effect, and the surface radiative properties. The conditions leading to the onset of convection are presented as functions of the optical thickness, scattering albedo, Planck number, surface emissivities, and transmissivities.  相似文献   

4.
We investigate the transient film boiling in the vicinity of a stagnation point on the frontal surface of a very hot blunt body which moves with a constant velocity in an incompressible viscous fluid in the presence of a vapor layer near the body surface. Within the unsteady two-phase boundary layer approximation, the equations of motion of the liquid and vapor phases are formulatedwith account of the conservation of mass, momentum, and energy on the a priori unknown phase interface. In the vicinity of the stagnation point on the body surface, the solution of the boundary layer equations is sought in the form of series in the longitudinal coordinate. For the leading terms of the series, a parabolic system of partial differential equations is obtained, which is solved numerically. The similarity parameters controlling the film boiling process are determined. On the basis of parametric numerical calculations, the dynamics of the vapor layer are investigated for the case of a plane hot body moving in water with the room pressure and temperature. In the space of governing parameters, the limits of the existence of steady and unsteady film boiling regimes are found.  相似文献   

5.
The dynamic steady state responses of a poroelastic half-space soil medium subjected to a moving rectangular load are investigated analytically/numerically. The full dynamic poroelastic theory of Biot is employed, under the assumption of an incompressible solid grain and neglecting the apparent mass density. Using the Fourier transform, the governing equations of motion are then reduced to a system of four coupled ordinary differential equations which are solved semi-analytically. Soil vertical displacements, accelerations and pore water pressures induced by moving load are calculated. Computed result shows that load velocity and intrinsic permeability of the soil medium shows an apparent effect on its dynamic responses and pore water pressures.  相似文献   

6.
Nonlinear dynamics of an inclined beam subjected to a moving load   总被引:1,自引:0,他引:1  
In this paper, the nonlinear dynamic response of an inclined pinned-pinned beam with a constant cross section, finite length subjected to a concentrated vertical force traveling with a constant velocity is investigated. The study is focused on the mode summation method and also on frequency analysis of the governing PDEs equations of motion. Furthermore, the steady-state response is studied by applying the multiple scales method. The nonlinear response of the beam is obtained by solving two coupled nonlinear PDEs governing equations of planar motion for both longitudinal and transverse oscillations of the beam. The dynamic magnification factor and normalized time histories of mid-pint of the beam are obtained for various load velocity ratios and the outcome results have been illustrated and compared to the results with those obtained from traditional linear solution. The appropriate parametric study considering the effects of the linear viscous damping, the velocity of the traveling load, beam inclination angle under zero or nonzero axial load are carried out to capture the influence of the effect of large deflections caused by stretching effects due to the beam’s immovable ends. It was seen that quadratic nonlinearity renders the softening effect on the dynamic response of the beam under the act of traveling load. Also in the case where the object leaves the inclined beam, its planar motion path is derived and the targeting accuracy is investigated and compared with those from the rigid solution assumption. Moreover, the stability analysis of steady-state response for the modes equations having quadratic nonlinearity was carried out and it was observed from the frequency response curves that for the considered parameters in the case of internal-external primary resonance, both saturation phenomenon and jump phenomenon can be predicted for the longitudinal excitation.  相似文献   

7.
The problem of steady, laminar, mixed convection boundary-layer flow over an isothermal vertical wedge embedded in a porous medium saturated with a nanofluid is studied, in the presence of thermal radiation. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis with Rosseland diffusion approximation. The wedge surface is maintained at a constant temperature and a constant nanoparticle volume fraction. The resulting governing equations are non-dimensionalized and transformed into a non-similar form and then solved by Keller box method. A comparison is made with the available results in the literature, and our results are in very good agreement with the known results. A parametric study of the physical parameters is made, and a representative set of numerical results for the velocity, temperature, and volume fraction, the local Nusselt and Sherwood numbers are presented graphically. The salient features of the results are analyzed and discussed.  相似文献   

8.
The dynamic compression of a fluid-filled isotropic Hookean elasto-porous medium with non-constant permeability is considered. The governing non-linear partial differential equations for two simple models are set up with the aid of an appropriate approximation and solved numerically for the medium displacements and fluid pressure. The results are compared with a series solution for the case of constant permeability. They indicate that the neglect of variable permeability could result in errors of order one hundred per cent.  相似文献   

9.
The use of a Fourier heating model in high intensity laser material processing is limited due to the assumptions made in the model. An electron-kinetic theory may offer an alternative solution to the problem. Consequently, in the present study an electron-kinetic theory approach is introduced to model the 3-dimensional laser heating process. The phase change and conduction effects are encountered when driving the governing equations. To simulate the moving heat source, a scanning velocity of the laser beam is considered, in this case, the laser beam scans the workpiece surface with a constant velocity. The governing heat transfer equation is in the form of integro-differential equation, which does not yield the analytical solution. Therefore, a numerical method employing an explicit scheme is introduced to discretize the governing equations. To validate the theoretical predictions, an experiment is conducted to measure the surface temperatures of the workpiece substrate during Nd YAG laser heating process. It is found that the rapid increase in temperature occurs in surface vicinity due to the successive electron-lattice site atom collisions. The depth of melting zone increases as the heating progresses and the temperature remains almost constant at the melting temperature of the substrate in the surface vicinity. In addition, the theoretical predictions agree well with the experimental findings. Received on 4 August 1997  相似文献   

10.
3-D DYNAMIC RESPONSE OF TRANSVERSELY ISOTROPIC SATURATED SOILS   总被引:1,自引:0,他引:1  
Introduction Thedynamicanalysisofsaturatedporoelasticmediaisofbroadmeaninginmanyaspectssuchasseismology,earthquakeengineering,soilmechanicsandgeophysics,etc.Thetransverselyisotropicsaturatedsoilsissolid fluidcoupledtwophasemediainwhichthe soilskeletondisp…  相似文献   

11.
We show that the Hamiltonian framework permits an elegant formulation of the nonlinear governing equations for the coupling between internal and surface waves in stratified water flows with piecewise constant vorticity.  相似文献   

12.
A theory of atmospheric icing due to freezing rain on an overhead line conductor (OHLC) is developed. The rain falls vertically on a horizontal OHLC that is thermally insulated. It is assumed that the collection efficiency of the accretion surface is unity and that this surface is in thermodynamic equilibrium with the environment.

For air temperature TA 0°C and raindrop temperature TD 0°C, the freezing rain accretes as rime ice, provided that the temperature of the ice surface Tl < 0°C. The evolution equation governing the mass transfer at the accretion surface is solved analytically, yielding the shape of the rime-ice surface. Equations governing the thermal state of the rime-ice deposit are also given. These determine the onset of wet growth or glaze accretion at the upper stagnation line during suitable environmental conditions.

For environmental conditions producing an ice surface at temperature Tl = 0°gC, the freezing accretes as glaze. Equations governing the heat and mass transfer at the surface determine the shape of the glaze surface and the downward viscous motion of the unfrozen water. For TD < 0°C, glaze evolution equations are developed for TA 0°C and TA 0°C. Analytical solutions of these equations are obtained. In particular, when TD < −TA < 0°C, the evolution equation predicts a novel limiting growth that is triangular in shape. Further study of the mass and heat transfer conditions, in the neighborhood of this final stage of glaze accretion, shows that it is maintained in thermodynamic equilibrium with its warm air environment.  相似文献   


13.
In the framework of the theory of mixtures, the governing equations of motion of a fluid-saturated poroelastic medium including microstructural (for both the solid and the fluid) and micro-inertia (for the solid) effects are derived. This is accomplished by appropriately combining the conservation of mass and linear momentum equations with the constitutive equations for both the solid and the fluid constituents. The solid is assumed to be gradient elastic, that is, its stress tensor depends on the strain and the second gradient of strain tensor. The fluid is assumed to have an analogous behavior, that is, its stress tensor depends on the pressure and the second gradient of pressure. A micro-inertia term in the form of the second gradient of the acceleration of the solid is also included in the equations of motion. The equations of motion in three dimensions are seven equations with seven unknowns, the six displacement components for the solid and the fluid and the pore-fluid pressure. Because of the microstructural effects, the order of these equations is two degrees higher than in the classical case. Application of the divergence and the rot operations on these equations enable one to study the propagation of plane harmonic waves in the infinitely extended medium separately in the form of dilatational and rotational dispersive waves. The effects of the microstructure and the micro-inertia on the dispersion curves are determined and discussed.  相似文献   

14.
This paper presents a study of the flow and heat transfer of an incompressible homogeneous second grade fluid past a stretching sheet. The governing partial differential equations are converted into ordinary differential equations by a similarity transformation. The effects of viscous dissipation and work due to deformation are considered in the energy equation and the variations of dimensionless surface temperature and dimensionless surface temperature gradient with various parameters are graphed and tabulated. Two cases are studied, namely, (i) the sheet with constant surface temperature (CST case) and (ii) the sheet with prescribed surface temperature (PST case).  相似文献   

15.
The problem of steady, laminar, mixed convection boundary-layer flow over a vertical cone embedded in a porous medium saturated with a nanofluid is studied, in the presence of thermal radiation. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis with Rosseland diffusion approximation. The cone surface is maintained at a constant temperature and a constant nanoparticle volume fraction. The resulting governing equations are non-dimensionalized and transformed into a non-similar form and then solved by Keller box method. A comparison is made with the available results in the literature, and our results are in very good agreement with the known results. A parametric study of the physical parameters is made and a representative set of numerical results for the local Nusselt and Sherwood numbers are presented graphically. Also, the salient features of the results are analyzed and discussed.  相似文献   

16.
针对非饱和地基土中埋置隧道的三维动力响应计算问题, 提出了波函数法.采用无限长的Flügge薄壁圆柱壳模拟圆形隧道衬砌,采用流、固、气组成的三相介质模拟非饱和地基土体.分别采用分离变量法以及Helmholtz矢量分解定理求解薄壁圆柱壳的振动控制方程与非饱和土的波动方程.根据隧-土交界面与地表面处的应力、位移以及孔隙流体压力等边界条件,利用平面波与柱面波的转换性质,实现了隧道内作用单位简谐载荷时隧道衬砌与土体系统动力响应的耦合求解.通过与既有单相弹性介质2.5维有限元-边界元法、两相饱和多孔介质2.5维有限元-边界元法以及三相非饱和介质Pip in Pip半解析法的计算结果进行对比, 验证了本文计算方法的可靠性. 最后,基于该方法, 通过算例分析了不同饱和度下非饱和土-隧道系统的动力响应特征.结果表明, 饱和度对土体动位移与超孔隙水压力的幅值响应有较大影响.该方法的非饱和地基土参数退化后,也可用来计算和分析饱和地基土或单相弹性地基土与隧道系统的动力响应.   相似文献   

17.
The motion of a rigid plastic cantilever beam which is surrounded by a damping medium and struck transversely at the tip by a moving mass is studied. The elementary theory, which disregards effects due to rate of straining and geometry changes is used. The governing equations of motion are integrated numerically. For comparison the case of discrete damping provided at the tip only is also solved. Results are presented for a wide range of parameters.  相似文献   

18.
In the second-order approximation in the dimensionless wave amplitude, the problem of nonlinear periodic capillary-gravity wave motion of the uniformly charged interface between two immiscible ideal incompressible fluids, the lower of which is perfectly electroconductive and the upper, dielectric, moves translationally at a constant velocity parallel to the interface, is solved analytically. It is shown that on the uniformly charged surface of an electroconductive ideal incompressible fluid the positions of internal nonlinear degenerate resonances depend of the medium density ratio but are independent of the upper medium velocity and the surface charge density on the interface. All resonances are realized at densities of the upper medium smaller than the density of the lower medium. In the region of Rayleigh-Taylor instability with respect to density there is no resonant wave interaction.  相似文献   

19.
研究了黏弹性传动带在1:1内共振时的横向非平面非线性动力学特性. 首先,利用Hamilton原理建立了黏弹性传动带横向非平面非线性动力学方程. 然后综合应用多尺度法和Galerkin离散法对偏微分形式的动力学方程进行摄动分析,得到了四维平均方程. 对平均方程的稳定性进行了分析,从理论上讨论了动力系统解的稳定性变化情况. 最后数值模拟结果表明黏弹性传动带系统存在混沌运动、概周期运动和周期运动.   相似文献   

20.
Snow is considered as an ideal nonlinear elastoplastic medium. A body performs planeparallel motion on snow. The area of its contact with snow is a part of a rectangular plate. The contact zone changes during the motion of the body. Steady motions are found from the derived equations of motion in the case when the constant external forces and the moment exerted on the body are given. The inverse problem of determining the forces and moments is solved for a given steady motion of a vehicle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号