首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The "temporal processing hypothesis" suggests that individuals with specific language impairments (SLIs) and dyslexia have severe deficits in processing rapidly presented or brief sensory information, both within the auditory and visual domains. This hypothesis has been supported through evidence that language-impaired individuals have excess auditory backward masking. This paper presents an analysis of masking results from several studies in terms of a model of temporal resolution. Results from this modeling suggest that the masking results can be better explained by an "auditory efficiency" hypothesis. If impaired or immature listeners have a normal temporal window, but require a higher signal-to-noise level (poor processing efficiency), this hypothesis predicts the observed small deficits in the simultaneous masking task, and the much larger deficits in backward and forward masking tasks amongst those listeners. The difference in performance on these masking tasks is predictable from the compressive nonlinearity of the basilar membrane. The model also correctly predicts that backward masking (i) is more prone to training effects, (ii) has greater inter- and intrasubject variability, and (iii) increases less with masker level than do other masking tasks. These findings provide a new perspective on the mechanisms underlying communication disorders and auditory masking.  相似文献   

2.
The differences in the suppression effect observed in forward and backward masking are consistent with an interpretation that suppression in forward masking results from a reduction of the effective level of the masker in the aditory periphery, and that the suppression in backward masking is influenced by these peripheral processes, but is dominated by additional, central processes. This conclusion is supported by experiments that show differences in the effect of ipsilateral versus contralateral presentation of the suppressor, and differences in the amount of the suppression observed as a function of the level, duration, and frequency of the suppressor.  相似文献   

3.
Frequency difference limens for pure tones preceded by a forward masker or followed by a backward masker were obtained across a wide range of signal levels. Relkin and Doucet [Hear. Res. 55, 215-222 (1991)] have shown that at a masker-signal delay of 100 ms, the thresholds of high-SR (spontaneous rate) auditory-nerve fibers are recovered, while the low-SR fiber thresholds are not. Therefore, forward-masked frequency discrimination potentially offers a method to investigate the role of low-SR fibers in the coding of frequency. It has been shown that when an intense forward masker is presented 100 ms before a pure-tone signal, intensity difference limens are elevated for mid-level signals [Zeng et al., Hear. Res. 55, 223-230 (1991)]. However, Plack and Viemeister [J. Acoust. Soc. Am. 92, 3097-3101 (1992)] have shown that a similar elevation in the intensity difference limen is obtained under conditions of backward masking, where selective adaptation of the auditory neurons would not be expected to occur. A condition of backward-masked frequency discrimination was therefore included to investigate the role of interference resulting from adding additional stimuli to a discrimination task. For signals at 1000 and 6000 Hz, there was no effect of a forward masker upon frequency difference limens. For the backward-masked conditions, an elevation of the frequency difference limen was observed at all signal levels, demonstrating that the effects of forward and backward maskers upon frequency discrimination are dissimilar and suggesting that cognitive effects are present in backward-masked discrimination tasks.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
The threshold of a short interaurally phase-inverted probe tone (20 ms, 500 Hz, S pi) was obtained in the presence of a 750-ms noise masker that was switched after 375 ms from interaurally phase-inverted (N pi) to interaurally in-phase (No). As the delay between probe-tone offset and noise phase transition is increased, the threshold decays from the N pi S pi threshold (masking level difference = 0 dB) to the No S pi threshold (masking level difference = 15 dB). The decay in this "binaural" situation is substantially slower than in a comparable "monaural" situation, where the interaural phase of the masker is held constant (N pi), but the level of the masker is reduced by 15 dB. The prolonged decay provides evidence for additional binaural sluggishness associated with "binaural forward masking." In a second experiment, "binaural backward masking" is studied by time reversing the maskers described above. Again, the situation where the phase is switched from No to N pi exhibits a slower transition than the situation with constant interaural phase (N pi) and a 15-dB increase in the level of the masker. The data for the binaural situations are compatible with the results of a related experiment, previously reported by Grantham and Wightman [J. Acoust. Soc. Am. 65, 1509-1517 (1979)] and are well fit by a model that incorporates a double-sided exponential temporal integration window.  相似文献   

6.
It is hypothesized that in sine-wave replicas of natural speech, lexical tone recognition would be severely impaired due to the loss of F0 information, but the linguistic information at the sentence level could be retrieved even with limited tone information. Forty-one native Mandarin-Chinese-speaking listeners participated in the experiments. Results showed that sine-wave tone-recognition performance was on average only 32.7% correct. However, sine-wave sentence-recognition performance was very accurate, approximately 92% correct on average. Therefore the functional load of lexical tones on sentence recognition is limited, and the high-level recognition of sine-wave sentences is likely attributed to the perceptual organization that is influenced by top-down processes.  相似文献   

7.
To assess temporal integration in normal hearing, cochlear impairment, and impairment simulated by masking, absolute thresholds for tones were measured as a function of duration. Durations ranged from 500 ms down to 15 ms at 0.25 kHz, 8 ms at 1 kHz, and 2 ms at 4 and 14 kHz. An adaptive 2I, 2AFC procedure with feedback was used. On each trial, two 500-ms observation intervals, marked by lights, were presented with an interstimulus interval of 250 ms. The monaural signal was presented in the temporal center of one observation interval. The results for five normal and six impaired listeners show: (1) normal listeners' thresholds decrease by about 8 to 10 dB per decade of duration, as expected; (2) listeners with cochlear impairments generally show less temporal integration than normal listeners; and (3) listeners with impairments simulated using masking noise generally show the same amount of temporal integration as normal listeners tested in the quiet. The difference between real and simulated impairments indicates that the reduced temporal integration observed in impaired listeners probably is not due to splatter of energy to frequency regions where thresholds are low, but reflects reduced temporal integration per se.  相似文献   

8.
The purpose of this study was to examine temporal resolution in normal-hearing preschool children. Word recognition was evaluated in quiet and in spectrally identical continuous and interrupted noise at signal-to-noise ratios (S/Ns) of 10, 0, and -10 dB. Sixteen children 4 to 5 years of age and eight adults participated. Performance decreased with decreasing S/N. At poorer S/Ns, participants demonstrated superior performance or a release from masking in the interrupted noise. Adults performed better than children, yet the release from masking was equivalent. Collectively these findings are consistent with the notion that preschool children suffer from poorer processing efficiency rather than temporal resolution per se.  相似文献   

9.
10.
11.
This study expands the limited understanding of pinniped aerial auditory masking and includes measurements at some of the relatively low frequencies predominant in many pinniped vocalizations. Behavioral techniques were used to obtain aerial critical ratios (CRs) within a hemianechoic chamber for a northern elephant seal (Mirounga angustirostris), a harbor seal (Phoca vitulina), and a California sea lion (Zalophus californianus). Simultaneous, octave-band noise maskers centered at seven test frequencies (0.2-8.0 kHz) were used to determine aerial CRs. Narrower and variable bandwidth masking noise was also used in order to obtain direct critical bandwidths (CBWs). The aerial CRs are very similar in magnitude and in frequency-specific differences (increasing gradually with test frequency) to underwater CRs for these subjects, demonstrating that pinniped cochlear processes are similar both in air and water. While, like most mammals, these pinniped subjects apparently lack specialization for enhanced detection of specific frequencies over masking noise, they consistently detect signals across a wide range of frequencies at relatively low signal-to-noise ratios. Direct CBWs are 3.2 to 14.2 times wider than estimated based on aerial CRs. The combined masking data are significant in terms of assessing aerial anthropogenic noise impacts, effective aerial communicative ranges, and amphibious aspects of pinniped cochlear mechanics.  相似文献   

12.
The pattern of auditory masking derived from Gaussian noise is often cited and used to predict the detrimental effects of masking noise on marine mammals. However, environmental noise (both anthropogenic and natural) may not always be Gaussian distributed. Some noise sources are highly structured with complex amplitude fluctuations that extend across frequency regions, which are often termed comodulated noise. Recent evidence with bottlenose dolphins using comodulated noise demonstrated a significant release from masking compared to Gaussian maskers of the same bandwidth and pressure spectral density level, a result known as comodulation masking release. The present study demonstrates a pattern of masking where both temporally fluctuating comodulated noise and environmental noise produce lower masked thresholds compared to Gaussian noise of the same spectral density level and bandwidth. Furthermore, a threshold reduction or "masking release" occurred when the environmental noise bandwidth increased beyond a critical band. These results provide further evidence that conventional models of auditory masking using Gaussian maskers (i.e., the power spectrum model) do not fully describe the masking effects that occur in realistic environments.  相似文献   

13.
Listening to speech in competing sounds poses a major difficulty for children with impaired hearing. This study aimed to determine the ability of children (3-12 yr of age) to use spatial separation between target speech and competing babble to improve speech intelligibility. Fifty-eight children (31 with normal hearing and 27 with impaired hearing who use bilateral hearing aids) were assessed by word and sentence material. Speech reception thresholds (SRTs) were measured with speech presented from 0° azimuth, and competing babble from either 0° or ±90° azimuth. Spatial release from masking (SRM) was defined as the difference between SRTs measured with co-located speech and babble and SRTs measured with spatially separated speech and babble. On average, hearing-impaired children attained near-normal performance when speech and babble originated from the frontal source, but performed poorer than their normal-hearing peers when babble was spatially separated from target speech. On average, normal-hearing children obtained an SRM of 3 dB whereas children with hearing loss did not demonstrate SRM. Results suggest that hearing-impaired children may need enhancement in signal-to-noise ratio to hear speech in difficult listening conditions as well as normal-hearing children.  相似文献   

14.
Children between the ages of 4 and 7 and adults were tested in free field on speech intelligibility using a four-alternative forced choice paradigm with spondees. Target speech was presented from front (0 degrees); speech or modulated speech-shaped-noise competitors were either in front or on the right (90 degrees). Speech reception thresholds were measured adaptively using a three-down/one-up algorithm. The primary difference between children and adults was seen in elevated thresholds in children in quiet and in all masked conditions. For both age groups, masking was greater with the speech-noise versus speech competitor and with two versus one competitor(s). Masking was also greater when the competitors were located in front compared with the right. The amount of masking did not differ across the two age groups. Spatial release from masking was similar in the two age groups, except for in the one-speech condition, when it was greater in children than adults. These findings suggest that, similar to adults, young children are able to utilize spatial and/or head shadow cues to segregate sounds in noisy environments. The potential utility of the measures used here for studying hearing-impaired children is also discussed.  相似文献   

15.
Under certain conditions, speech recognition in noise decreases above conversational levels when signal-to-noise ratio is held constant. The current study was undertaken to determine if nonlinear growth of masking and the subsequent reduction in "effective" signal-to-noise ratio accounts for this decline. Nine young adults with normal hearing listened to monosyllabic words at three levels in each of three levels of a masker shaped to match the speech spectrum. An additional low-level noise equated audibility by producing equivalent masked thresholds for all subjects. If word recognition was determined entirely by signal-to-noise ratio and was independent of overall speech and masker levels, scores at a given signal-to-noise ratio should remain constant with increasing level. Masked pure-tone thresholds measured in the speech-shaped maskers increased linearly with increasing masker level at lower frequencies but nonlinearly at higher frequencies, consistent with nonlinear growth of upward spread of masking that followed the peaks in the spectrum of the speech-shaped masker. Word recognition declined significantly with increasing level when signal-to-noise ratio was held constant which was attributed to nonlinear growth of masking and reduced "effective" signal-to-noise ratio at high speech-shaped masker levels, as indicated by audibility estimates based on the Articulation Index.  相似文献   

16.
Normal-hearing (NH) listeners maintain robust speech understanding in modulated noise by "glimpsing" portions of speech from a partially masked waveform--a phenomenon known as masking release (MR). Cochlear implant (CI) users, however, generally lack such resiliency. In previous studies, temporal masking of speech by noise occurred randomly, obscuring to what degree MR is attributable to the temporal overlap of speech and masker. In the present study, masker conditions were constructed to either promote (+MR) or suppress (-MR) masking release by controlling the degree of temporal overlap. Sentence recognition was measured in 14 CI subjects and 22 young-adult NH subjects. Normal-hearing subjects showed large amounts of masking release in the +MR condition and a marked difference between +MR and -MR conditions. In contrast, CI subjects demonstrated less effect of MR overall, and some displayed modulation interference as reflected by poorer performance in modulated maskers. These results suggest that the poor performance of typical CI users in noise might be accounted for by factors that extend beyond peripheral masking, such as reduced segmental boundaries between syllables or words. Encouragingly, the best CI users tested here could take advantage of masker fluctuations to better segregate the speech from the background.  相似文献   

17.
18.
Studies comparing native and non-native listener performance on speech perception tasks can distinguish the roles of general auditory and language-independent processes from those involving prior knowledge of a given language. Previous experiments have demonstrated a performance disparity between native and non-native listeners on tasks involving sentence processing in noise. However, the effects of energetic and informational masking have not been explicitly distinguished. Here, English and Spanish listener groups identified keywords in English sentences in quiet and masked by either stationary noise or a competing utterance, conditions known to produce predominantly energetic and informational masking, respectively. In the stationary noise conditions, non-native talkers suffered more from increasing levels of noise for two of the three keywords scored. In the competing talker condition, the performance differential also increased with masker level. A computer model of energetic masking in the competing talker condition ruled out the possibility that the native advantage could be explained wholly by energetic masking. Both groups drew equal benefit from differences in mean F0 between target and masker, suggesting that processes which make use of this cue do not engage language-specific knowledge.  相似文献   

19.
Upward spreading of masking, measured in terms of absolute masked threshold, is greater in hearing-impaired listeners than in listeners with normal hearing. The purpose of this study was to make further observations on upward-masked thresholds and speech recognition in noise in elderly listeners. Two age groups were used: One group consisted of listeners who were more than 60 years old, and the second group consisted of listeners who were less than 36 years old. Both groups had listeners with normal hearing as well as listeners with mild to moderate sensorineural loss. The masking paradigm consisted of a continuous low-pass-filtered (1000-Hz) noise, which was mixed with the output of a self-tracking, sweep-frequency Bekesy audiometer. Thresholds were measured in quiet and with maskers at 70 and 90 dB SPL. The upward-masked thresholds were similar for young and elderly hearing-impaired listeners. A few elderly listeners had lower upward-masked thresholds compared with the young control group; however, their on-frequency masked thresholds were nearly identical to the control group. A significant correlation was found between upward-masked thresholds and the Speech Perception in Noise (SPIN) test in elderly listeners.  相似文献   

20.
Spatial release from masking (SRM) was measured in groups of children with bilateral cochlear implants (BiCIs, average ages 6.0 and 7.9 yr) and with normal hearing (NH, average ages 5.0 and 7.8 yr). Speech reception thresholds (SRTs) were measured for target speech in front (0°), and interferers in front, distributed asymmetrically toward the right (+90°/+90°) or distributed symmetrically toward the right and left (+90°/-90°). In the asymmetrical condition both monaural "better ear" and binaural cues are available. In the symmetrical condition, listeners rely heavily on binaural cues to segregate sources. SRM was computed as the difference between SRTs in the front condition and SRTs in either the asymmetrical or symmetrical conditions. Results showed that asymmetrical SRM was smaller in BiCI users than NH children. Furthermore, NH children showed symmetrical SRM, suggesting they are able to use binaural cues for source segregation, whereas children with BiCIs had minimal or absent symmetrical SRM. These findings suggest that children who receive BiCIs can segregate speech from noise under conditions that maximize monaural better ear cues. Limitations in the CI devices likely play an important role in limiting SRM. Thus, improvement in spatial hearing abilities in children with BiCIs may require binaural processing strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号