首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The novel binucleating ligand, 6,6 prime-methylene-bis(5 prime-amino-3 prime,4 prime-benzo-2 prime-thiapentyl)-1,11-diamino-2,3:9,10-dibenzo-4,8-dithiaundecane (H4L) was prepared and reacted with copper(II) salts in dry MeOH to yield mixtures of copper(I) and copper(II) complexes with Cl- and ClO-4 counter ions. The amine functions on the ligand release protons to form copper(I) complexes: (Cu2L)X2, where X=Cl−, ClO4-. The complexes were oxidized to (Cu2L)X4 with H2O2 in DMF; Cu(NO3)2 gave a different complex, [Cu2(H4L)(NO3)2](NO3)2, as regards proton releasing ability, coordination and oxidation number. Evidence for the structures of this new tetraamino-tetrathioether ligand and its copper complexes is provided by 1H-, 13C-n.m.r., mass, u.v.–vis., i.r. spectra, elemental analyses, molar conductivities and magnetic moments. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Polymeric copper(II) and nickel(II) complexes of a binucleating tetraoxime macrocycle, 6,6-methylene-bis[1,12-di(hydroximino)- 2,3;9,10-dibenzo-1,11-diaza-4,8-dithiacyclotridecane] (H4L), have been prepared and characterised by elemental analysis, magnetic moments, i.r., uv/vis., and e.p.r. spectral studies. I.r. spectra show that the ligand acts in a tetradentate manner and coordinates via N, S and O donor atoms. The geometry of the resulting metal chelates is discussed with the help of magnetic and spectroscopic measurements. The elemental analyses, stoichiometry and the spectroscopic data of the complexes indicate that the copper(II) and nickel(II) ions are coordinated by the coordination environment of the ligand. The spectral data suggest a distorted tetragonal geometry for polymeric copper(II), and nickel(II) ions in the complexes. The stoichiometry of the metal-to- H4L ratio of complexes (2) and (3), prepared from CuCl2 and NiCl2 respectively, was 3:1, suggesting the formation of polymeric species.  相似文献   

3.
The ligand 1,2-bis(benzimidazol-2-yl)-1,2-ethanediol (H2bzimed, 1) and its N-methylated analogue (H2mbzimed, 2) form a variety of polynuclear complexes with copper(II), all of which contain a planar Cu2O2 lozenge as a central element and in which the bridging oxygen belongs to an alkoxo group of the ligand. Syntheses are reported for dinuclear [Cu2(Hmbzimed)2](ClO4)2 x 1.5H2O, Cu(2)2(2), and the tetranuclear species [Cu4(Hbzimed)4(ClO4)2](NO3)2 x 4H2O, Cu(4)1(4), [Cu4(Hmbzimed)2(mbzimed)Cl2](ClO4)2 x 2H2O x C2H5OH, Cu(4)2(3), and rac-[Cu4(H2bzimed)4(bzimed)(ClO4)2](ClO4)4 x 1.5H2O x 3.5C2H5OH, Cu(4)1(5). Crystal structures are reported for the tetranuclear species. Cu(4)1(4) shows a cubane structure, Cu(4)2(3) a stepped cubane structure, and rac-Cu(4)1(5) a novel structure in which one doubly deprotonated ligand lies between the two Cu2O2 units. Magnetic susceptibility measurements indicate that all complexes show antiferromagnetic coupling in the solid state. Studies in solution (ESI-MS, CD, NMR) show that Cu(2)2(2) and Cu(4)2(3) persist in solution but that Cu(4)1(4) dissociates partially and rac-Cu(4)1(5) completely. The six coordination modes of the ligands are discussed together with the effect of the N-methylation on the ligand conformation.  相似文献   

4.
5.
A new binucleating ligand incorporating four oxime groups, butane-2,3-dione O-[4-aminooxy-2,3-bis-(2-hydroxyimino-1-methyl-propylideneaminooxymethyl)-but-2-enyl]-dioxime, (H4mto), has been synthesized and its dinuclear cobalt(III), copper(II), and homo- and hetero-tetranuclear copper(II)–manganese(II) complexes have been prepared and characterized by 1H- and 13C-n.m.r., i.r., magnetic moments and mass spectral studies. Elemental analyses, stoichiometric and spectroscopic data indicate that the metal ions in the complexes are coordinated to the oxime nitrogen atoms (C=N) and the data support the proposed structure for H4mto and its complexes. Moreover, dinuclear cobalt(III) and copper(II) complexes of H4mto have a 2:1 metal:ligand ratio.  相似文献   

6.
A new sugar-derived Schiff's base ligand N-(3-tert-butyl-2-hydroxybenzylidene)-4,6-O-ethylidene-beta-D-glucopyranosylamine (H3L1) has been developed which afforded the coordinatively labile, alcoholophilic trinuclear Cu(II) complex [Cu3(L1)2(CH3OH)(H2O)] (1). Complex 1 has been further used in the synthesis of a series of alcohol-bound complexes with a common formula of [Cu3(L1)2(ROH)2] (R = Me (2), Et (3), nPr (4), nBu (5), nOct (6)). X-ray structural analyses of complexes 2-6 revealed the collinearity of trinuclear copper(II) centers with Cu-Cu-Cu angles in the range of 166-172 degrees . The terminal and central coppers are bound with NO3 and O4 atoms, respectively, and exhibit square-planar geometry. The trinuclear structures of 2-6 can be viewed as the two {Cu(L1)}- fragments capture a copper(II) ion in the central position, which is further stabilized by a hydrogen-bonding interaction between the alcohol ligands and the sugar C-3 alkoxo group. Complex 2 exhibits a strong antiferromagnetic interaction between the Cu(II) ions (J = -238 cm(-1)). Diffusion of methanol into a solution of complex 1 in a chloroform/THF mixed solvent afforded the linear trinuclear complex [Cu(3)(L1)2(CH3OH)2(THF)2] (7). The basic structure of 7 is identical to complex 2; however, THF binding about the terminal coppers (Cu-O(THF) = 2.394(7) and 2.466(7) A) has introduced the square-pyramidal geometry, indicating that the planar trinuclear complexes 2-6 are coordinatively unsaturated and the terminal metal sites are responsible for further ligations. In the venture of proton-transfer reactions, a successful proton transfer onto the saccharide C-3 alkoxo group has been achieved using 4,6-O-ethylidene-d-glucopyranose, resulting in the self-assembled tetranuclear complex, [Cu4(HL1)4] (8), consisting of the mononuclear Cu(II) chiral building blocks, {Cu(HL1)}.  相似文献   

7.
室温下,H2L(H2L=6,6'-二甲氧基-2,2'-[(1,4-亚丁基)二氧双(氮次甲基)]二酚)和苦味酸铜在丙酮溶剂中反应,制备了一种新型的四核苦味酸铜(II)化合物[Cu4L2(pic)4(H2O)2]·2H2O(1)。采用红外光谱、元素分析及X射线单晶衍射等手段对化合物的结构进行了确认。结构解析表明,1属单斜晶系,空间群C2/c,晶胞参数为a=3.4376(4)nm,b=1.3750(3)nm,c=2.2418(2)nm,β=106.689(3)0,V=10.150(2)nm3,Z=4,Mr=2011.44,Dc=1.316 g/cm3,μ=0.916 mm-1,F(000)=4096,R1=0.0979,wR2=0.2010。1的对称单元中含有4个Cu(II)原子,2个配位H2L分子,4个配位苦味酸根阴离子,2个配位水分子和2个游离水分子组成。中心4个Cu(II)的配位数均为6,以每个Cu(II)原子为中心均形成了扭曲八面体结构的配位几何构型,分子间氢键和π-π堆积作用形成了三维超分子结构。抗菌性能测试结果表明,化合物1的抑菌活性高于H2L,二者对金黄色葡萄球菌、大肠杆菌和枯草杆菌均有显著的抑菌活性。  相似文献   

8.
Summary Copper(II) complexes with a tridentate chelating ligand within the general 2N, X (X = O or S) donor class, containing abis(benzimidazolyl) donor set, were prepared and characterized. X-band e.p.r. spectra of the complexes indicateg >g and the largeg and lowA have been interpreted in terms of a distorted basal plane. Superimposed on theg component are five SHF lines withA N = 16±2G, supporting the interaction of two nitrogen atoms with the copper nucleus. Thus, the basal plane of the complex comprises 2N atoms, with the ligand hetero atom being axially coordinated.  相似文献   

9.
Eight kinds of imidazolate-bridged copper(II) complexes were found to be classified into two categories from the magnetic properties. The crystal structures of [Cu(L)(μ-im)]n (Him = imidazole; L = nonane-4,6-dionate, 2,6-dimethylheptane-3,5-dionate) and [Cu(L)(μ-im)]4 (L = nonane-4,6-dionate, 1-phenylbutane-1,3-dionate) were determined, to reveal that they consist of polymeric chains and tetranuclear cycles, respectively. Note that the nonane-4,6-dionate derivative gave the two phases. The Bonner–Fisher model (a one-dimensional antiferromagnetic chain model) was plausibly applied to [Cu(L)(μ-im)]n for the best fit, while a square model was to [Cu(L)(μ-im)]4. The complexes with unknown crystal structures were also subjected to magnetic measurements, and the tetra- and polymeric structures could be clearly distinguished from each other by fitting the magnetic data to appropriate models. The exchange parameters were comparable for both series (2J/kB = ?78 to ?97 K) because the structurally common bridges Cu–N(eq)–N(eq)–Cu afford comparable magnitudes of couplings.  相似文献   

10.
11.
Tridentate Schiff-base carboxylate-containing ligands, derived from the condensation of 2-imidazolecarboxaldehyde with the amino acids beta-alanine (H2L1) and 2-aminobenzoic acid (H2L5) and the condensation of 2-pyridinecarboxaldehyde with beta-alanine (HL2), D,L-3-aminobutyric acid (HL3), and 4-aminobutyric acid (HL4), react with copper(II) perchlorate to give rise to the helical-chain complexes [[Cu(mu-HL1)(H2O)](ClO4)]n (1), [[Cu(mu-L2)(H2O)](ClO4).2H2O]n (2), and [[Cu(mu-L3)(H2O)](ClO4).2H2O]n (3), the tetranuclear complex [[Cu(mu-L4)(H2O)](ClO4)]4 (4), and the mononuclear complex [Cu(HL5)(H2O)](ClO4).1/2H2O (5). The reaction of copper(II) chloride with H2L1 leads not to a syn-anti carboxylate-bridged compound but to the chloride-bridged dinuclear complex [Cu(HL1)(mu-Cl)]2 (6). The structures of these complexes have been solved by X-ray crystallography. In complexes 1-4, roughly square-pyramidal copper(II) ions are sequentially bridged by syn-anti carboxylate groups. Copper(II) ions exhibit CuN2O3 coordination environments with the three donor atoms of the ligand and one oxygen atom belonging to the carboxylate group of an adjacent molecule occupying the basal positions and an oxygen atom (from a water molecule in the case of compounds 1-3 and from a perchlorate anion in 4) coordinated in the apical position. Therefore, carboxylate groups are mutually cis oriented and each syn-anti carboxylate group bridges two copper(II) ions in basal-basal positions with Cu...Cu distances ranging from 4.541 A for 4 to 5.186 A for 2. In complex 5, the water molecule occupies an equatorial position in the distorted octahedral environment of the copper(II) ion and the Cu-O carboxylate distances in axial positions are very large (>2.78 A). Therefore, this complex can be considered as mononuclear. Complex 6 exhibits a dinuclear parallel planar structure with Ci symmetry. Copper(II) ions display a square-pyramidal coordination geometry (tau = 0.06) for the N2OCl2 donor set, where the basal coordination sites are occupied by one of the bridging chlorine atoms and the three donor atoms of the tridentate ligand and the apical site is occupied by the remaining bridging chlorine atom. Magnetic susceptibility measurements indicate that complexes 1-4 exhibit weak ferromagnetic interactions whereas a weak antiferromagnetic coupling has been established for 6. The magnetic behavior can be satisfactorily explained on the basis of the structural data for these and related complexes.  相似文献   

12.
13.
Crystalline copper films were deposited by aerosol‐assisted chemical vapor deposition (AACVD) in the absence of hydrogen from two newly synthesized complexes [Cu(deae)(TFA)]4·1.25THF ( 1 ) and [Cu4(OAc)6(bdmap)2(H2O)2]·4H2O ( 2 ) [deae = N, N‐diethylaminoethanolate, TFA = trifloroacetate, OAc = acetate and bdmap = 1,3‐bis(dimethylamino)‐2‐propanolato]. These precursors were prepared in high yield using mixed ligands and crystallized in tetragonal and triclinic crystal systems with space groups 141/a and P ? 1. Complexes 1 and 2 thermally decomposed at 290 and 250 °C, respectively, to yield copper films which were characterized by SEM/EDX for their morphology and composition and PXRD for their crystallinity and phase. These films have smooth morphologies with particle sizes within the range of 0.3–0.6 µm and may find applications in fabrication of ultralarge‐scale integrated circuits. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Two similar tetranuclear copper(II) complexes with the formulae [Cu4(L1)21,1-N3)42-CH3COO)2] and [Cu4(L2)21,1-N3)2(μ-Br)2Br2(CH3OH)2], where L1 and L2 are the deprotonated forms of 2-[(2-ethylaminoethylimino)methyl]-5-methoxyphenol and 5-methoxy-2-[(2-piperidin-1-ylethylimino)methyl]phenol, respectively, have been synthesized and characterized by spectroscopic methods and single-crystal X-ray diffraction. Both complexes are centrosymmetric tetranuclear copper(II) compounds. The bridging groups in [Cu4(L1)21,1-N3)42-CH3COO)2] are μ1,1-azide ligands and μ2-acetate ligands, and those in [Cu4(L2)21,1-N3)2(μ-Br)2Br2(CH3OH)2] are μ1,1-azide ligands and μ-bromide ligands. Each Cu atom in the complexes is in a square pyramidal geometry.  相似文献   

15.
Summary The structure of the hexaazamacrobicycle, sarcophagine, (diAMMEsar)·2H2O, formed by extracting Co ion from the [Co(diAMMEsar H2)]Cl5·-H2O cage with 8-hydroxyquinoline, has been determined by elemental analysis, and i.r., u.v.-vis., 1H-n.m.r. and mass spectroscopies. Two octahedral complexes, [M(diAMM-EsarH2)]Cl4·2H2O (M = NiII or CuII), have been prepared and characterized. The e.s.r. spectrum of the CuII complex in the solid state indicates spin-exchange interaction between the CuII ions. However, in CD3OD-D2O (10%) at 77K, the spectrum is characteristic of a compound having axial symmetry (d x 2y 2).  相似文献   

16.
Yokota S  Tachi Y  Itoh S 《Inorganic chemistry》2002,41(6):1342-1344
Copper(II) and zinc(II) complexes supported by a popular beta-diketiminate ligand (1(-), 2-mesitylamino-4-mesitylimino-2-pentene), [CuII(1)(AcO)] and [[ZnII(1)]2(mu-MeO)(mu-AcO)], have been demonstrated to undergo an oxidative degradation to give a ketone diimine derivative (2) under aerobic conditions. The crystal structures of the mononuclear copper(II) and dinuclear zinc(II) complexes of the beta-diketiminate ligand as well as the copper(II) complex of the modified ligand have been determined by X-ray crystallographic analysis. Mechanism for the oxidative degradation reaction of the beta-diketiminate ligand is also discussed.  相似文献   

17.
Heterobimetallic {cis-[Pt](μ-σ,π-CCPh)2}[Cu(NCMe)]BF4 (3a: [Pt] = (bipy)Pt, bipy = 2,2′-bipyridine; 3b: [Pt] = (bipy′)Pt, bipy′ = 4,4′-dimethyl-2,2′-bipyridine) is accessible by the reaction of cis-[Pt](CCPh)2 (1a: [Pt] = (bipy)Pt, 1b: [Pt] = (bipy′)Pt]) with [Cu(NCMe)4]BF4 (2). Substitution of NCMe by PPh3 (4) can be realized by the reaction of 3a with 4, whereby [{cis-[Pt](μ-σ,π-CCPh)2}Cu(PPh3)]BF4 (5) is formed. On prolonged stirring of 3 and 5, respectively, NCMe and PPh3 are eliminated and tetrametallic {[{cis-[Pt](η2-CCPh)2}Cu]2}(BF4)2 (6) is produced. Addition of an excess of NCMe to 6 gives heterobimetallic 3a.When instead of NCMe or PPh3 chelating molecules such as bipy (7) are reacted with 3a then the heterobimetallic π-tweezer molecule [{cis-[Pt](μ-σ,π-CCPh)2}Cu(bipy)]BF4 (8) is formed. Treatment of 8 with another equivalent of 7 produced [Cu(bipy2)]BF4 (9) along with [Pt](CCPh)2. However, when 3b is reacted with 1b in a 1:1 molar ratio then 10 and 11 of general composition [{[Pt](CCPh)2}2Cu]BF4 are formed. These species are isomers and only differ in the binding of the PhCC units to copper(I). A possible mechanism for the formation of 10 and 11 is presented.The solid state structures of 6, 10 and 11 are reported. In 11 the [{cis-[Pt](μ-σ,π-CCPh)2}2Cu]+ building block is set-up by two nearly orthogonal positioned bis(alkynyl) platinum units which are connected by a Cu(I) ion, whereby the four carbon-carbon triple bonds are unsymmetrical coordinated to Cu(I). In trimetallic 10 two cis-[Pt](CCPh)2 units are bridged by a copper(I) center, however, only one of the two PhCC ligands of individual cis-[Pt](CCPh)2 fragments is η2-coordinated to Cu(I) giving rise to the formation of a [(η2-CCPh)2Cu]+ moiety with a linear alkyne-copper-alkyne arrangement (alkyne = midpoint of the CC triple bond). In 6 two almost parallel oriented [Pt](CCPh)2 planes are linked by two copper(I) ions, whereby two individual PhCC units, one associated with each Pt building block, are symmetrically π-coordinated to Cu.  相似文献   

18.
The novel tripodal ligand N-(bis(2-pyridyl)methyl)-2-pyridinecarboxamide (Py3AH) affords monomeric and dimeric copper(II) complexes with coordinated carboxamido nitrogens. Although many chloro-bridged dimeric copper(II) complexes are known, [Cu(Py3A)(Cl)] (1) remains monomeric and planar with a pendant pyridine and does not form either a chloro-bridged dimer or the ligand-shared dimeric complex [Cu(Py3A)(Cl)]2 (4) in solvents such as CH3CN. When 1 is dissolved in alcohols, square pyramidal alcohol adducts [Cu(Py3A)(Cl)(CH3OH)] (2) and [Cu(Py3A)(Cl)(C2H5OH)] (3) are readily formed. In 2 and 3, the ROH molecules are bound at axial site of copper(II) and the weak axial binding of the ROH molecule is strengthened by intramolecular hydrogen bonding between ROH and the pendant pyridine nitrogen. Two ligand-shared dimeric species [Cu(Py3A)(Cl)]2 (4) and [Cu(Py3A)]2(ClO4)2 (5) have also been synthesized in which the pendant pyridine of one [Cu(Py3A)] unit completes the coordination sphere of the other [Cu(Py3A)] neighbor. These ligand-shared dimers are obtained in aqueous solutions or in complete absence of chloride in the reaction mixtures.  相似文献   

19.
A novel monomer copper(II) complex [Cu(L)2(SCN)] · ClO4 (1) and a tetranuclear cobalt(II) complex [Co4(L)4(N3)4](OH)4 · 2H2O (2)(L = 3,6-bis-(3,5-dimethylpyrazolyl)-pyridazine) have been synthesized and structurally characterized. Single crystal X-ray analyses show that the Cu(II) atom is in a distorted trigonal bipyramidal coordinated environment consisting of four N atoms of L and one N atom of SCN in complex (1), and the monomer is extended to a 1D chain by the weak intermolecular π...π stacking interactions. In the complex (2), four Co(II) atoms are linked by four bridging azido groups in μ-1,1-N3 (end-on) coordination mode to form a tetranuclear configuration. The fungicidal activity of the title compounds have been studied, and the results show that there are certain activities against several bacteria for the complexes and the ligand. Furthermore, two complexes exhibit blue emission fluoresce in the solid state at room temperature.  相似文献   

20.
The novel phenol and phthalazine-based symmetric compartmental 26-membered polyaza macropolycyclic ligand LH2, was synthesised, incorporating 2,6-diformyl-p-cresol and 1,4-dihydrazinophthalazine via 1:1 condensation. Its coordination behaviour with CuII and ZnII ions was investigated. The tetranuclear complexes [M4μ(Cl2)(L)Cl4]·2H2O exhibited aremarkably high stability, suggesting that, along with the large number of nitrogen donors available for metal binding, deprotonated phenolic functions were also involved in binding the metal ion. Incorporation of the bridging units into the macrocyclic cavity influenced electronic communications between the metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号