首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bleomycin (BLM) group of antitumor antibiotics effects DNA cleavage in a sequence-selective manner. Previous studies have indicated that the metal-binding and bithiazole moieties of BLM are both involved in the binding of BLM to DNA. The metal-binding domain is normally the predominant structural element in determining the sequence selectivity of DNA binding, but it has been shown that replacement of the bithiazole moiety with a strong DNA binder can alter the sequence selectivity of DNA binding and cleavage. To further explore the mechanism by which BLM and DNA interact, a trithiazole-containing deglycoBLM analogue was synthesized and tested for its ability to relax supercoiled DNA and cleave linear duplex DNA in a sequence-selective fashion. Also studied was cleavage of a novel RNA substrate. Solid-phase synthesis of the trithiazole deglycoBLM A(5) analogue was achieved using a TentaGel resin containing a Dde linker and elaborated from five key intermediates. The ability of the resulting BLM analogue to relax supercoiled DNA was largely unaffected by introduction of the additional thiazole moiety. Remarkably, while no new sites of DNA cleavage were observed for this analogue, there was a strong preference for cleavage at two 5'-GT-3' sites when a 5'-(32)P end-labeled DNA duplex was used as a substrate. The alteration of sequence selectivity of cleavage was accompanied by some decrease in the potency of DNA cleavage, albeit without a dramatic diminution. In common with BLM, the trithiazole analogue of deglycoBLM A(5) effected both hydrolytic cleavage of RNA in the absence of added metal ion and oxidative cleavage in the presence of Fe(2+) and O(2). In comparison with BLM A(5), the relative efficiencies of hydrolytic cleavage at individual sites were altered.  相似文献   

2.
3.
The DNA cleavage properties of metallobleomycins conjugated to three solid supports were investigated using plasmid DNA, relaxed covalently closed circular DNA, and linear duplex DNA as substrates. Cleavage of pBR322 and pSP64 plasmid DNAs by Fe(II).BLM A(5)-CPG-C(2) was observed with efficiencies not dissimilar to that obtained using free Fe(II).BLM A(5). Similar results were observed following Fe(II).BLM A(5)-CPG-C(2)-mediated cleavage of a relaxed plasmid, a substrate that lacks ends or negative supercoiling capable of facilitating strand separation. BLMs covalently tethered to solid supports, including Fe(II).BLM A(5)-Sepharose 4B, Fe(II).BLM A(5)-CPG-C(6), and Fe(II).BLM A(5)-CPG-C(2), cleaved a 5'-(32)P end labeled linear DNA duplex with a sequence selectivity identical to that of free Fe(II).BLM A(5); cleavage predominated at 5'-G(82)T(83)-3' and 5'-G(84)T(85)-3'. To verify that these results could also be obtained using other metallobleomycins, supercoiled plasmid DNA and a linear DNA duplex were employed as substrates for Co(III).BLM A(5)-CPG-C(2). Free green Co(III).BLM A(5) was only about 2-fold more efficient than green Co(III).BLM A(5)-CPG-C(2) in effecting DNA cleavage. A similar result was obtained using Cu(II).BLM A(5)-CPG-C(2) + dithiothreitol. In addition, the conjugated Co.BLM A(5) and Cu.BLM A(5) cleaved the linear duplex DNA with a sequence selectivity identical to that of the respective free metalloBLMs. Interestingly, when supercoiled plasmid DNA was used as a substrate, conjugated Fe.BLM A(5) and Co.BLM A(5) were both found to produce Form III DNA in addition to Form II DNA. The formation of Form III DNA by conjugated Fe.BLM A(5) was assessed quantitatively. When corrected for differences in the intrinsic efficiencies of DNA cleavage by conjugated vs free BLMs, conjugated Fe.BLM A(5) was found to produce Form III DNA to about the same extent as the respective free Fe.BLM A(5), arguing that this conjugated BLM can also effect double-strand cleavage of DNA. Although previous evidence supporting DNA intercalation by some metallobleomycins is convincing, the present evidence indicates that threading intercalation is not a requirement for DNA cleavage by Fe(II).BLM A(5), Co(III).BLM A(5), or Cu(I).BLM A(5).  相似文献   

4.
The bleomycins (BLMs) are clinically used antitumor antibiotics. Their mechanism of action is believed to involve oxidative cleavage of DNA and possibly also RNA degradation. DNA degradation has been studied extensively and shown to involve binding of an activated metallobleomycin to DNA, followed by abstraction of C4'-H from deoxyribose in the rate-limiting step for DNA degradation. It is interesting that while DNA and RNA degradation by activated Fe.BLM has been studied extensively, much less is known about the actual binding selectivity of BLM, that is, the obligatory step that precedes cleavage. Thus it is unclear whether cleavage specificity is defined by the binding event or whether cleavage occurs at a subset of preferred binding sites. With only a few exceptions, NMR binding studies have employed metalloBLMs such as Co.BLM and Zn.BLM whose therapeutic relevance is uncertain. A single biochemical study that compared DNA binding and cleavage directly also employed Co.BLM. It is logical to anticipate that preferred sites of DNA cleavage will occur at sites that are (a subset of) preferred DNA binding sites, but there are currently no data available relevant to this issue. Herein, we describe the development and implementation of a novel strategy to identify DNA motifs that bind BLM strongly.  相似文献   

5.
6.
Akiyama Y  Ma Q  Edgar E  Laikhter A  Hecht SM 《Organic letters》2008,10(11):2127-2130
A 16-nucleotide DNA hairpin containing 4-aminobenzo[g]quinazoline-2-one 2'-deoxyribose at position 15 has been prepared and found to lack significant fluorescence. When treated with Fe(II).BLM, the hairpin was found to undergo oxidative transformation selectively at position 15. The predominant fluorescent product was characterized and quantified. The pro-fluorescent DNA hairpin was used as a substrate for 15 bleomycin congeners, and the results were compared with those obtained following cleavage of a radiolabeled DNA duplex and PAGE analysis.  相似文献   

7.
The bleomycin (BLM) group antitumor antibiotics are glycopeptide-derived natural products shown to cause sequence selective lesions in DNA. Prior studies have indicated that the linker region, composed of the methylvalerate and threonine residues, may be responsible for a conformational bend in the agent required for efficient DNA cleavage. We have synthesized a number of conformationally constrained methylvalerate analogues and incorporated them into deglycobleomycin A(5) congeners using our recently reported procedure for the solid phase construction of (deglyco)bleomycin and its analogues. These analogues were designed to probe the effects of conformational constraint of the native valerate moiety. Initial experiments indicated that the constrained molecules, none of which mimic the conformation proposed for the natural valerate linker, possessed DNA cleavage activity, albeit with potencies less than that of (deglyco)BLM and lacking sequence selectivity. Further experiments demonstrated that these analogues failed to produce alkali-labile lesions in DNA or sequence selective oxidative damage in RNA. However, two of the conformationally constrained deglycoBLM analogues were shown to mediate RNA cleavage in the absence of added Fe(2+). The ability of the analogues to mediate the oxygenation of small molecules was also assayed, and it was shown that they were as competent in the transfer of oxygen to low molecular weight substrates as the parent compound.  相似文献   

8.
Pyropheophorbides are red-absorbing porphyrin-like photosensitizers that may interact with DNA either by intercalation or by external binding with self-stacking according to the value of the nucleotide to chromophore molar ratio (N/C). This article reports on the nature and sequence selectivity of the DNA damage photoinduced by a water-soluble chlorhydrate of aminopyropheophorbide. First, this pyropheophorbide is shown to induce on irradiation the cleavage of phiX174 DNA by both Type-I and -II mechanisms, suggested by scavengers and D2O effects. These conclusions are then improved by sequencing experiments performed on a 20-mer oligodeoxynucleotide (ODN) irradiated at wavelengths >345 nm in the presence of the dye, N/C varying from 2.5 to 0.5. Oxidation of all guanine residues to the same extent is observed after piperidine treatment on both single- and double-stranded ODN. Moreover, unexpectedly, a remarkable sequence-selective cleavage occurring at a 5'-CG-3' site is detected before alkali treatment. This frank break is clearly predominant for a low nucleotide to chromophore molar ratio, corresponding to a self-stacking of the dye along the DNA helix. The electrophoretic properties of the band suggest that this lesion results from a sugar oxidation, which leads via a base release to a ribonolactone residue. The proposal is supported by high-performance liquid chromatography-matrix-assisted laser desorption-ionization mass spectrometry experiments that also reveal other sequence-selective frank scissions of lower intensity at 5'-GC-3' or other 5'-CG-3' sites. This sequence selectivity is discussed with regard to the binding selectivity of cationic porphyrins.  相似文献   

9.
ZIF268, a member of the classical zinc finger protein family, contains three Cys(2)His(2) zinc binding domains that together recognize the DNA sequence 5'-AGCGTGGGCGT-3'. These domains can be fused to an endonuclease to make a chimeric protein to target and cleave specific DNA sequences. A peptide corresponding to these domains, named ZIF268-3D, has been prepared to determine if the zinc finger domain itself can promote DNA cleavage when a redox active metal ion, Fe(II), is coordinated. The UV-vis absorption spectrum of Fe(II)-ZIF268-3D is indicative of Fe(II) coordination. Using fluorescence anisotropy, we demonstrate that Fe(II)-ZIF268-3D binds selectively to its target DNA in the same manner as Zn(II)-ZIF268-3D. In the presence of added oxidant, H(2)O(2) or O(2), DNA cleavage is not observed by Fe(II)-ZIF268-3D. Instead, the peptide itself is rapidly oxidized. Similarly, Zn(II)-ZIF268-3D and apo-ZIF268-3D are rapidly oxidized by H(2)O(2) or O(2), and we propose that ZIF268-3D is highly susceptible to oxidation.  相似文献   

10.
The binding of two hairpin polyamide ligands at adjacent sites on DNA has been studied using NMR spectroscopy. The ligands ImPyPy-gamma-PyPyPy-Gly-Dp and Ac-ImPyPy-gamma-PyPyPy-Gly-Dp were studied binding to oligomers containing one or two matched binding sites: 5'-XGTTA-3' and 5'-TAACXNGTTA-3', where X is G, C, or A and N = 0, 1 or 2. At these sites the C-terminal ring shows an equilibrium between normal and inverted conformations. Better binding was observed with the ligand running 5' to 3' along the contacted strand than in the opposite direction. Complexes of DNAs with two binding sites indicated that at least one spacing base pair was required, and that the identity of this base pair was not critical. Binding with 5' to 3' contact is again preferred. Demonstrated binding at adjacent sites indicates that it may be possible to engineer cooperative binding for enhanced specificity or affinity.  相似文献   

11.
To extend the target DNA sequence length of the hairpin pyrrole-imidazole (Py-Im) polyamide 1, we designed and synthesized Y-shaped and tandem hairpin Py-Im polyamides 2 and 3, which possess 1-(chloromethyl)-5-hydroxy-1,2-dihydro-3H-benz[e]indole (seco-CBI) as DNA-alkylating moieties. High-resolution denaturing polyacrylamide gel electrophoresis by using 5'-Texas-Red-labeled 465 base pair (bp) DNA fragments revealed that conjugates 2 and 3 alkylated the adenine of the target DNA sequences at nanomolar concentrations. Conjugate 2 alkylated adenine N3 at the 3' end of two 8 bp match sequences, 5'-AATAACCA-3' (site A) and 5'-AAATTCCA-3' (site C), while conjugate 3 recognized one 10 bp match sequence, 5'-AGAATAACCA-3' (site A) in the 465 bp DNA fragments. These results demonstrate that seco-CBI conjugates of Y-shaped and tandem hairpin polyamides have extended their target alkylation sequences.  相似文献   

12.
Two types of distamycin-linked hydroxamic acids (DHA), which contain various lengths of polymethylene chains (PM-DHA) and relatively rigid phenylene ones (Ph-DHA), have been synthesized for the first time. Their DNA cleavage specificities were investigated by an end-labeled fragment cleavage experiment in the presence of vanadyl ion and hydrogen peroxide. The DNA cleavage by the PM-DHA x VO(II) complexes was shown to be very dependent on the length of the chain and the AT sequences. The tetramethylene DHA (1b) complex exhibited highly specific cleavage patterns flanking the 8 and 10 AT sites. Interestingly, the Ph-DHA complexes selectively cleaved the 5' end-labeled strand at the AT sites, but did not cleave the 3' end-labeled strand. The vanadyl complexing moieties and the local sequence conformation of the AT tract are suggested to contribute significantly to the DNA recognition of the PM-DHA x VO(II) complexes.  相似文献   

13.
Ren R  Yang P  Zheng W  Hua Z 《Inorganic chemistry》2000,39(24):5454-5463
Copper(II)-L-histidine complexes effectively promote the cleavage of plasmid DNA and dideoxynucleotide dApdA at physiological pH and temperature. Studies of the mechanism of plasmid DNA cleavage by added radical scavengers, using rigorously anaerobic experiments, analyses for malondialdehyde-like products, religation assays, and HPLC analyses, indicate that DNA cleavage mediated by Cu(L-His) occurs via a hydrolytic path. The hydrolytic cleavage rate constants at 37 degrees C are estimated to be 0.76 h-1 for the decrease of form I and 0.25 h-1 for the increase of form III. The phosphoimager picture reveals that Cu(L-His) cleaves DNA with a certain sequence specificity (preferentially at 5'-GT-3'). The dinucleotide hydrolysis shows, with [Cu(L-His)] = 0.8 mM, rate enhancement factors of > 10(8). Interestingly, histidine-metal ion interactions (with Cu(II), Ni(II), Zn(II), etc.) have been used for various applications, e.g., protein purification, cross-linking, and targeting proteins to lipid bilayers. Our findings may provide the basis for developing new applications and new ways to design more effective and useful catalysts for DNA cleavage. Cu(L-His) is one of only a few well-defined metal complexes demonstrated to hydrolytically cleave dideoxynucleotides and DNA.  相似文献   

14.
Photoproducts in double-stranded DNA induced by 193 nm radiation have been investigated. Double-stranded, supercoiled pBR322 DNA in buffered aqueous solution was exposed to varying fluences of 193 nm radiation from an ArF excimer laser. The quantum yields for formation of cyclobutylpyrimidine dimers, frank strand breaks and alkali labile sites were calculated from the conversion of supercoiled (Form I) DNA to relaxed (Form II) DNA after treatment with Micrococcus luteus dimer-specific endonuclease, no treatment, or treatment with alkali and heat, respectively. The quantum yields were 1.65 (+/- 0.03) X 10(-3) for pyrimidine dimers, 9.4 (+/- 3.2) X 10(-5) for frank strand breaks and 9.6 (+/- 3.6) X 10(-5) for alkali labile sites. The quantum yields for pyrimidine dimers and strand breaks and alkali labile sites were not affected by 10 nM mannitol. The relative quantum yields for these DNA photoproducts induced by 193 nm radiation differed markedly from those produced by 254 nm radiation.  相似文献   

15.
Bleomycin is an antibiotic used in cancer chemotherapy for its ability to achieve both single- and double-strand cleavage of DNA through abstraction of the deoxyribose C4'-H. Magnetic circular dichroism (MCD) and X-ray absorption (XAS) spectroscopies have been used to study the interaction of the biologically relevant FeIIBLM complex with DNA. Calf thymus DNA was used as the substrate as well as short oligonucleotides, including one with a preferred 5'-G-pyrimidine-3' cleavage site [d(GGAAGCTTCC)2] and one without [d(GGAAATTTCC)2]. DNA binding to FeIIBLM significantly perturbs the FeII active site, resulting in a change in intensity ratio of the d d transitions and a decrease in excited-state orbital splitting (5Eg). Although this effect is somewhat dependent on length and composition of the oligonucleotide, it is not correlated to the presence of a 5'-G-pyrimidine-3' cleavage site. No effect is observed on the charge-transfer transitions, indicating that the H-bonding recognition between the pyrimidine and guanine base does not perturb Fe-pyrimidine backbonding. Azide binding studies indicate that FeIIBLM bound to either oligomer has the same affinity for N3-. Parallel studies of BLM structural derivatives indicate that FeIIiso-PEPLM, in which the carbamoyl group is shifted on the mannose sugar, forms the same DNA-bound species as FeIIBLM. In contrast, FeIIDP-PEPLM, in which the -aminoalanine group is absent, forms a new species upon DNA binding. These data are consistent with a model in which the primary amine from the -aminoalanine is an FeII ligand and the mannose carbamoyl provides either a ligand to the FeII or significant second-sphere effects on the FeII site; intercalation of the bithiazole tail into the double helix likely brings the metal-bound complex close enough to the DNA to create steric interactions that remove the sugar groups from interaction with the FeII. The fact that the FeII active site is perturbed regardless of DNA sequence is consistent with the fact that cleavage is observed for both 5'-GC-3' and nonspecific oligomers and indicates that different reaction coordinates may be active, depending on orientation of the deoxyribose C4'-H.  相似文献   

16.
Hairpin polyamides coupled head-to head with alkyl linkers of varying lengths were synthesized, and their DNA binding properties were determined. The DNA binding affinities of six-ring hairpin dimers Im-Im-Py-(R)[Im-Im-Py-(R)(HNCO(CH))(n)(CO)gamma-Py-Py-Py-beta-Dp](NH)gamma-Im-Py-Py-beta-Dp (1-4) (where n = 1-4) for their 10-bp, 11-bp, and 12-bp match sites 5'-TGGCATACCA-3', 5'-TGGCATTACCA-3', and 5'-TGGCATATACCA-3' were determined by quantitative DNase I footprint titrations. The most selective dimer Im-Im-Py-(R)[Im-Im-Py-(R)(HNCO(CH)(2))(2)(CO)gamma-Py-Py-Py-beta-Dp](NH)gamma-Im-Py-Py-beta-Dp (2) binds the 10-bp site match site with an equilibrium association constant of K(a) = 7.5 x 10(10) M(-1) and displays 25- and 140-fold selectivity over the 11-bp and 12-bp match sites, respectively. The affinity toward single base pair mismatched sequences is 4- to 8-fold lower if one hairpin module of the dimer is affected, but close to 200-fold lower if both hairpin modules face a single mismatch base pair. The head-to-head hairpin dimer motif expands the binding site size of DNA sequences targetable with polyamides.  相似文献   

17.
The antitumor antibiotic bleomycin has long been believed to exert its therapeutic effects at the level of DNA cleavage. Recently, evidence has been presented to suggest that RNA cleavage may also be important and that one or more transfer RNAs may be involved. To define those tRNAs that may represent important loci for the action of bleomycin, we have fractionated chicken liver tRNAs and identified those isoacceptors most susceptible to oxidative cleavage by Fe(II).BLM. Two chicken liver tRNAs, tRNA3Lys and tRNAPhe, were found to be cleaved with exceptional facility by Fe(II).BLM, and both were cleaved predominantly at U66. The cleavage of tRNA3Lys was shown to be minimally affected by physiological concentrations of Mg2+. Chicken liver tRNA3Lys is identical in sequence with human tRNA3Lys. These findings support a possible role for a critical tRNA such as tRNA3Lys in the mechanism by which bleomycin mediates its antitumor activity.  相似文献   

18.
Quantitative microarray profiling of DNA-binding molecules   总被引:2,自引:0,他引:2  
A high-throughput Cognate Site Identity (CSI) microarray platform interrogating all 524 800 10-base pair variable sites is correlated to quantitative DNase I footprinting data of DNA binding pyrrole-imidazole polyamides. An eight-ring hairpin polyamide programmed to target the 5 bp sequence 5'-TACGT-3' within the hypoxia response element (HRE) yielded a CSI microarray-derived sequence motif of 5'-WWACGT-3' (W = A,T). A linear beta-linked polyamide programmed to target a (GAA)3 repeat yielded a CSI microarray-derived sequence motif of 5'-AARAARWWG-3' (R = G,A). Quantitative DNase I footprinting of selected sequences from each microarray experiment enabled quantitative prediction of Ka values across the microarray intensity spectrum.  相似文献   

19.
Eight-ring cyclic polyamides containing pyrrole (Py), imidazole (Im), and hydroxypyrrole (Hp) aromatic amino acids recognize predetermined six base pair sites in the minor groove of DNA. Two four-ring polyamide subunits linked by (R)-2,4-diaminobutyric acid [(R)H2Ngamma] residue form hairpin polyamide structures with enhanced DNA binding properties. In hairpin polyamides, substitution of Hp/Py for Py/Py pairs enhances selectivity for T. A base pairs but compromises binding affinity for specific sequences. In an effort to enhance the binding properties of polyamides containing Hp/Py pairings, four eight ring cyclic polyamides were synthesized and analyzed on a DNA restriction fragment containing three 6-bp sites 5'-tAGNNCTt-3', where NN = AA, TA, or AT. Quantitative footprint titration experiments demonstrate that contiguous placement of Hp/Py pairs in cyclo-(gamma-ImPyPyPy-(R)H2Ngamma-ImHpHpPy-) (1) provides a 20-fold increase in affinity for the 5'-tAGAACTt-3' site (Ka = 7.5 x 10(7)M(-1)) relative to ImPyPyPy-(R)H2Ngamma-ImHpHpPy-C3-OH (2). A cyclic polyamide of sequence composition cyclo-(gamma-ImHpPyPy-(R)H2Ngamma-ImHpPyPy-) (3) binds a 5'-tAGTACTt-3' site with an equilibrium association constant KA= 3.2 x 10(9)M(-1), representing a fivefold increase relative to the hairpin analogue ImHpPyPy-(R)H2Ngamma-ImHpPyPy-C3-OH (4). Arrangement of Hp/Py pairs in a 3'-stagger regulates specificity of cyclo-(gamma-ImPyHpPy-(R)H2Ngamma-ImPyHpPy-) (5) for the 5'-tAGATCTt-3' site (Ka = 7.5 x 10(7)M(-1)) threefold increase in affinity relative to the hairpin analogue ImPyHpPy-(R)H2Ngamma-ImPyHpPy-C3-OH (6), respectively. This study identifies cyclic polyamides as a viable motif for restoring recognition properties of polyamides containing Hp/Py pairs.  相似文献   

20.
A dimeric neomycin-neomycin conjugate 3 with a flexible linker, 2,2'-(ethylenedioxy)bis(ethylamine), has been synthesized and characterized. Dimer 3 can selectively bind to AT-rich DNA duplexes with high affinity. Biophysical studies have been performed between 3 and different nucleic acids with varying base composition and conformation by using ITC (isothermal calorimetry), CD (circular dichroism), FID (fluorescent intercalator displacement), and UV (ultraviolet) thermal denaturation experiments. A few conclusions can be drawn from this study: (1) FID assay with 3 and polynucleotides demonstrates the preference of 3 toward AT-rich sequences over GC-rich sequences. (2) FID assay and UV thermal denaturation experiments show that 3 has a higher affinity for the poly(dA)·poly(dT) DNA duplex than for the poly(dA)·2poly(dT) DNA triplex. Contrary to neomycin, 3 destabilizes poly(dA)·2poly(dT) triplex but stabilizes poly(dA)·poly(dT) duplex, suggesting the major groove as the binding site. (3) UV thermal denaturation studies and ITC experiments show that 3 stabilizes continuous AT-tract DNA better than DNA duplexes with alternating AT bases. (4) CD and FID titration studies show a DNA binding site size of 10-12 base pairs/drug, depending upon the structure/sequence of the duplex for AT-rich DNA duplexes. (5) FID and ITC titration between 3 and an intramolecular DNA duplex [d(5'-A(12)-x-T(12)-3'), x = hexaethylene glycol linker] results in a binding stoichiometry of 1:1 with a binding constant ~10(8) M(-1) at 100 mM KCl. (6) FID assay using 3 and 512 hairpin DNA sequences that vary in their AT base content and placement also show a higher binding selectivity of 3 toward continuous AT-rich than toward DNA duplexes with alternate AT base pairs. (7) Salt-dependent studies indicate the formation of three ion pairs during binding of the DNA duplex d[5'-A(12)-x-T(12)-3'] and 3. (8) ITC-derived binding constants between 3 and DNA duplexes have the following order: AT continuous, d[5'-G(3)A(5)T(5)C(3)-3'] > AT alternate, d[5'-G(3)(AT)(5)C(3)-3'] > GC-rich d[5'-A(3)G(5)C(5)T(3)-3']. (9) 3 binds to the AT-tract-containing DNA duplex (B* DNA, d[5'-G(3)A(5)T(5)C(3)-3']) with 1 order of magnitude higher affinity than to a DNA duplex with alternating AT base pairs (B DNA, d[5'-G(3)(AT)(5)C(3)-3']) and with almost 3 orders of magnitude higher affinity than a GC-rich DNA (A-form, d[5'-A(3)G(5)C(5)T(3)-3']).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号