首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Surfactant mixtures are widely used in industrial applications due to their favorable synergistic interactions. For instance, anionic and nonionic mixtures are often employed in detergent, personal care, and enhanced oil recovery. It is useful to understand micellization behaviors of such mixtures, as they are important for formulation optimizations. A range of techniques including surface tensiometry, fluorescence spectroscopy, ultrafiltration, and analytical ultracentrifugation (AUC), were employed in this work to obtain information on the micellization behaviors of the mixed n-dodecyl-β-D-maltoside (DM)/sodium dodecyl sulfonate (SDSN) system. The interaction parameter, monomer concentration, and micellar size and shape distribution were obtained for this mixed surfactant system as a function of total surfactant concentration as well as mixing ratio to achieve a full understanding of their aggregation behaviors. The coexistence of two types of micelles was identified in this mixed anionic/nonionic surfactant system for the first time. A model is proposed to explain such coexistence based on the surface activities and the interactions between the two types of surfactants. These findings are useful for optimizing the composition of mixed surfactant systems and enhancing the synergetic efficiency of the system to achieve more effective and economical formulations.  相似文献   

2.
We present the formation of viscoelastic wormlike micelles in mixed amino acid-based anionic and nonionic surfactants in aqueous systems in the absence of salt. N-Dodecylglutamic acid (designated as LAD) has a higher Krafft temperature; however, on neutralization with alkaline amino acid l-lysine, it forms micelles and the solution behaves like a Newtonian fluid at 25 degrees C. Addition of tri(oxyethylene) monododecyl ether (C(12)EO(3)) and tri(oxyethylene) monotetradecyl ether (C(14)EO(3)) to the dilute aqueous solution of the LAD-lysine induces one-dimensional micellar growth. With increasing C(12)EO(3) or C(14)EO(3) concentration, the solution viscosity increases gradually, but after a certain concentration, the elongated micelles entangle forming a rigid network of wormlike micelles and the solution viscosity increases tremendously. Thus formed wormlike micelles show a viscoelastic character and follow the Maxwell model. Tri(oxyethylene) monohexadecyl ether (C(16)EO(3)), on the other hand, could not form wormlike micelles, although the solution viscosity increases too. The micelles become elongated; however, they do not appear to form a rigid network of wormlike micelles in the case of C(16)EO(3). Rheological measurements have shown that zero shear viscosity (eta(0)) increases with the C(12)EO(3) concentration gradually at first and then sharply, and finally decreases before phase separation. However, no such maximum in the eta(0) plot is observed with the C(14)EO(3). The eta(0) increases monotonously with the C(14)EO(3) concentration till phase separation. In studies of the effect of temperature on the wormlike micellar behavior it has been found that the eta(0) decays exponentially with temperature, following an Arrehenius behavior and at sufficiently higher temperatures the solutions follow a Newtonian behavior. The flow activation energy calculated from the slope of log eta(0) versus 1/T plot is very close to the value reported for typical wormlike micelles. Finally, we also present the effect of neutralization degree of lysine on the rheology and phase behavior. The formation of wormlike micelles is confirmed by the Maxwell model fit to the experimental rheological data and by Cole-Cole plots.  相似文献   

3.
This paper describes how the cationic polyelectrolyte, polyDMDAAC (poly(dimethyl diallylammonium chloride)), is used to manipulate the adsorption of the anionic surfactant SDS and the mixed ionic/nonionic surfactant mixture of SDS (sodium dodecyl sulfate)/C(12)E(6) (monododecyl hexaethylene glycol) onto the surface of hydrophilic silica. The deposition of a thin robust polymer layer from a dilute polymer/surfactant solution promotes SDS adsorption and substantially modifies the adsorption of SDS/C(12)E(6) mixtures in favor of a surface relatively rich in SDS compared to the solution composition. Different deposition conditions for the polyDMDAAC layer are discussed. In particular, at higher solution polymer concentrations and in the presence of 1 M NaCl, a thicker polymer layer is deposited and the reversibility of the surfactant adsorption is significantly altered.  相似文献   

4.
The synergism and foaming behavior of a mixed surfactant system consisting of a nonionic surfactant (polyethoxylated alkyl ether C(n)E(m)) and a fatty acid soap (sodium oleate) were studied. The micellar interaction parameter (the beta-parameter) was determined from the cmc following the approach of Rubingh's regular solution theory. For both the C(12)E(6)/sodium oleate and the C(14)E(6)/sodium oleate mixtures, the results indicate a fairly strong attractive interaction (negative beta-values), which were in agreement with previous data reported for other nonionic/anionic surfactant systems. The characteristics of the foam produced from the surfactants were evaluated using a glass column equipped with a series of electrodes measuring the conductance of the foam, which enabled the water content of the foam to be determined. From these measurements, since the total foam volume was almost the same for all concentrations and surfactants, we compared the amount of liquid in the foam produced under dynamic foaming and the ability of the foam to entrain the liquid after the airflow was switched-off (static foam stability). The amount of liquid in the foam 100 s after the air was switched-off followed the order NaOl > C(12)E(6) > C(14)E(6). Also, the mixtures had the same foam volumes as the pure surfactants at the same concentration. However, both mixtures had higher concentrations of liquid in the foam when the mole fraction of the nonionic surfactant in the mixed surfactant system was greater than about >0.3 in the solution.  相似文献   

5.
A thermodynamic model is derived which is suitable to describe adsorption from a mixed protein/surfactant solution. The comparison with experimental data for HSA mixed with the nonionic surfactant decyl dimethyl phosphine oxide shows good agreement. Some model calculations are discussed in terms of the competitive character of the process of adsorption from mixed protein/surfactant solutions. The behavior of globular (HSA) and flexible (beta-casein) proteins appears to be quite different due to the possibility of changing the molar area of adsorbed protein molecules.  相似文献   

6.
Interaction between binary surfactant mixtures containing anionic surfactants viz. sodium dodecyl sulphates (NaDS) and magnesium dodecyl sulphates (Mg(DS)2) and a nonionic surfactants viz. dodecyl dodecapolyethylene glycol ether (C12E12) and dodecyl pentadecapolyethylene glycol ether (C12E15) in water at different mole fractions (0–1) were studied by surface tension, viscometry and dynamic light scattering (DLS) methods. The composition of mixed micelles and the interaction parameter, β evaluated from the CMC data obtained by surface tension for different systems using Rubingh's theory were discussed. Activity coefficient (f1 and f2) of metal dodecyl sulphates (MDS)/C12Em (m = 12, 15) mixed surfactant systems were evaluated, which shows extent of ideality of individual surfactant in mixed system. The estimated interaction parameter indicates an overall attractive interaction in the mixed micelles, which is predominant for NaDS as compared to Mg(DS)2. Counter ion valency has specific effect on the mixed micelles, as Mg(DS)2 has less interaction with nonionic surfactants in comparison to NaDS due to strong condensation of counter ion. The stability factors for mixed micelles were also discussed by Maeda's approach, which was justified on the basis of steric factor due to difference in head group of nonionic surfactant. DLS measurements and viscosity data reveals the synergism in mixed micelles, showing typical viscosity trends and linearity in sizes were observed.  相似文献   

7.
The phase behavior and microstructure of surfactant systems containing a new alkanolamide-type foam booster, dodecanoyl N-methyl ethanolamide (NMEA-12), were investigated by means of phase study and small angle X-ray scattering. Different from other similar alkanolamides, NMEA-12 possesses a low melting point and forms a lyotropic liquid-crystalline phase (L(alpha) phase) at room temperature. This is attributed to the attached methyl group, which increases the fluidity of the molecule. In the SDS/NMEA-12/water system, hexagonal and lamellar (L(alpha)) liquid-crystalline phases are obtained at significantly low surfactant concentrations. The stability of these phases decreases when SDS is replaced with a nonionic surfactant (C12EO8). However, for both ionic and nonionic surfactants, the effective area per surfactant molecule at the interface shrinks upon addition of NMEA-12, indicating that the surfactant layer is getting more compact. The possible implications of these results on the potential applications of NMEA-12 as foam stabilizer are discussed.  相似文献   

8.
Paraffin emulsions are important in technological applications such as coating in the food packaging industry or to provide waterproof properties to particleboard panels. Small particle size (about 1.0 μm) and low polydispersity are required to form stable paraffin emulsions for these applications. In this context, the main objective of the present work is to study the influence of the surfactant system and the emulsification process on the properties of paraffin emulsions. A high pressure homogenizer was used to prepare the emulsions and its characterization was made by means of optical microscopy, laser diffraction and electrophoretic mobility measurements. Emulsions were prepared as a function of the ionic/nonionic surfactant ratio, the total surfactant concentration and the homogenization pressure. A simple theoretical model to predict the minimum particle size was used, assuming that surfactant is either at the oil-water interface or as monomer in the external phase. Experimental and theoretical data are on good agreement and the formation of stable emulsions is explained according to such model. This result could be of prime importance in order to formulate new paraffin emulsions.  相似文献   

9.
In this study, we demonstrate by AFM imaging that nonionic surfactants self-assemble into hemicylindrical aggregates at the interface between graphite and the room temperature ionic liquid ethylammonium nitrate. Like aqueous systems, surfactant first adsorbs in a tail-to-tail monolayer arrangement along one of the three symmetry axes of graphite, templating subsequent self-assembly into adsorbed hemicylinders. Longer surfactant tails and higher concentrations are required to produce hemicylindrical aggregates in the ionic liquid than in aqueous solutions.  相似文献   

10.
Summary Light scattering and electrophoretic studies have been made of the mixed micelles formed in the systems ofn-dodecyl nonaoxyethylene ether/sodium dodecyl sulfate (NaC12S), andi-octylphenyl nonaoxyethylene ether/NaC12S as a function of the mole ratio of nonionic/ionic surfactants. In the former system the micellar molecular weight increases simply with increasing nonionic content, while in the latter system it rises abruptly when the nonionic content exceeds about 50% by mole. This behaviour would be interpreted by a difference in hydrocarbon-chain attraction between these two systems. The degree of ionic dissociation, , of NaC12S in the mixed micelles increases as the content of the nonionic surfactant increases. This tendency is in accordance with the previous result obtained by pNa and vapor pressure depression data. The value of is closely related to the charge density, , on the surface of the micelle; increasing with decreasing . The micellar charge for NaC12S alone, estimated from electrophoretic data, is much larger than that calculated from light scattering data by using the equation derived byMysels. For this discrepancy, a plausible explanation would be made by the different surfaces of the micelle measured by these two techniques.With 1 figure and 2 tables  相似文献   

11.
Three-phase behavior in a mixed nonionic surfactant system   总被引:1,自引:0,他引:1  
The effect of monodisperse solubilities of each surfactant in an excess oil phase on the three-phase behavior was investigated in a water/octaethyleneglycol dodecyl ether (R12EO8)/tetraethyleneglycol dodecyl ether (R12EO4)/heptane system. The mid temperature of the three-phase region is defined as the HLB temperature. The HLB temperature is largely skewed to higher temperature in a dilute region due to the difference in the distribution of each surfactant between excess oil and microemulsion (surfactant) phases forming the three-phase body. Taking account of the monodisperse solubilities, the equation for the HLB temperature was obtained on the basis of geometrical calculation of a particular three-phase triangle. The equation well describes the three-phase behavior for a mixed surfactant system in a space of compositions and temperature.In the mixed surfactant system, the monodisperse solubility of R12EO8 in oil phase forming a three-phase body is monotonously increased with the rise in temperature, whereas that of R12EO4 is first increased and then is decreased. Consequently, the sum of both solubilities does not change greatly in a wide range of temperature.  相似文献   

12.
Mixtures of toluene and water from 5 to 50% oil fraction and 5 to 25% surfactant by weight were studied. Winsor Type IV microemulsions were formed in numerous cases. Review of partial ternary phase diagrams for these systems indicated the area of single-phase microemulsion with toluene could be maximized at an hydrophilic-lipophilic balance (HLB) of approximately 14.5. Select single-phase samples were further analyzed by surface tension and dynamic light scattering techniques, which allowed a detailed characterization of the solution equilibrium thermodynamics and size stability. Particle sizes averaged approximately 5 nm and were nearly constant over a wide variety of conditions and for 6-18 months. When benzyl alcohol was used instead of toluene, the optimum HLB for the formation of single-phase systems was found to have a lower limit of 17. Particle sizes in these systems were <30 nm but showed greater variability. The decrease in particle size as surfactant concentration increased was determined to be associated with changes in ethlyene oxide chain conformation. The increase in particle size due to swelling with increased oil concentration was used to determine the surfactant surface area in the oil phase. A detailed comparison of alkylamine ethoxylate to octyl- and nonylphenol ethoxylate surfactants in terms of micelle thermodynamics, size, and stability indicate that the alkylamine-based surfactants are potential candidates for the replacement of nonylphenol-based surfactants in some systems with a more polar oil phase like benzyl alcohol.  相似文献   

13.
Summary Aqueous suspensions and emulsions stabilized solely by nonionic surfactant of the polyoxyethylene type are flocculated by adding polymeric acid (for example, poly-acrylic acid) and electrolyte (acid and neutral salts of polyvalent cations). This destabilization effect of polymeric acids is ascribed to the interaction between the polyacid and nonionic surfactant on the colloid particles. Some examples of the flocculation reaction are shown.
Zusammenfassung Wässerige Suspensionen und Emulsionen, die durch nichtionogene Tenside vorn Polyoxyäthylentyp allein stabilisiert sind, werden durch Zusatz polymerer Säuren (z. B. Polyakrylsäure) und Elektrolyten (Säure und neutrale Salze polyvalenter Kationen) geflockt. Die destabilisierende Wirkung der polymeren Säuren wird der Wechselwirkung zwischen der Polymersäure und dem nichtionogenen Tensid zugeschrieben. Einige Beispiele für die Flockungsreaktion werden mitgeteilt.


With 1 figure  相似文献   

14.
The structure of micelles formed by nonionic polyoxyethylene alkyl ether nonionic surfactants, C n E m , in the room-temperature ionic liquid, ethylammonium nitrate (EAN), has been determined by small-angle neutron scattering (SANS) as a function of alkyl and ethoxy chain length, concentration, and temperature. Micelles are found to form for all alkyl chains from dodecyl through to octadecyl. Dodecyl-chained surfactants have high critical micelle concentrations, around 1 wt%, and form weakly structured micelles. Surfactants with longer alkyl chains readily form micelles in EAN. The observed micelle structure changes systematically with alkyl and ethoxy chain length, in parallel with observations in aqueous solutions. Decreasing ethoxy chain length at constant alkyl chain length leads to a sphere to rod transition. These micelles also grow into rods with increasing temperature as their cloud point is approached in EAN.  相似文献   

15.
The formation and rheological behavior of a viscoelastic wormlike micellar solution in an aqueous solution of a nonionic fluorinated surfactant, perfluoroalkyl sulfonamide ethoxylate, of structure C8F17SO2N(C3H7)(CH2CH2O)10H was studied. Temperature-induced viscosity growth is observed even at low-surfactant concentration (approximately 1 wt %), and viscosity reaches the maximum at a temperature T(eta)-max. Upon successive increases in the temperature, the viscosity decreases, and ultimately a phase separation occurs. Small-angle X-ray scattering (SAXS) measurements confirm the presence of cylindrical aggregates at low temperature, which undergo continuous one-dimensional growth with increasing temperature, and ultimately, an indication of a slight lamellarlike structural pattern is observed, which probably comes from the formation of micellar joints or branching. Such changes in the microstructure result in a decrease in the viscosity and stress-relaxation time, while the network structure is retained; the trends in the evolution of shear modulus (Go) and relaxation time (tauR) with temperature are in agreement with this. With increased surfactant concentration, the temperature corresponding to the viscosity maximum (T eta-max) in the temperature-viscosity curve shifts to lower values, and the viscosity at temperatures below or around T eta-max increases sharply. A viscoelastic solution with Maxwellian-type dynamic rheological behavior at low-shear frequency is formed, which is typical of entangled wormlike micelles. Rheological parameters, eta(o) and Go, show scaling relationships with the surfactant concentrations with exponents slightly greater than the values predicted by the living-polymer model, but the exponent of tauR is in agreement with the theory. Dynamic light-scattering measurements indicate the presence of fast relaxation modes, associated with micelles, and medium and slow modes, associated with transient networks. The disappearance of the slow mode and the predominance of the medium mode as the temperature increases support the conclusions derived from SAXS and rheometry.  相似文献   

16.
The study is focused on evaluation of clouding phenomena of the aqueous single nonionic surfactant system Triton X-100 (TX-100) and its mixed systems with anionic aerosol-OT (AOT) and cationic dodecylpyridinium chloride (DPC) in presence of hydrophobic ions furnished by sodium salts of carboxylic acids, viz., sodium ethanoate, sodium propanoate, sodium butanoate, and sodium hexanoate and the respective carboxylic acids [ethanoic acid, propanoic acid, butanoic acid, and hexanoic acid]. The influence of salts on the cloud point (CP) has been explained on the basis of salt effect as well as the solubilization of higher alkyl chain hydrophobic ions furnished by these salts. Moreover, the co- and counterion effect has been taken into account to explain the variation of the CP in the mixed systems. However, the effect of acids on CP has been explained in the light of their aqueous solubility and their partitioning ability between octanol and water as reflected by their K OW values.  相似文献   

17.
New Monte Carlo simulations are presented for nonionic surfactant adsorption at the liquid/vapor interface of a monatomic solvent specifically investigating the roles of tail attraction and binary mixtures of different tail lengths. Surfactant molecules consist of an amphiphilic chain with a solvophilic head and a solvophobic tail. All molecules in the system, solvent and surfactant, are characterized by the Lennard-Jones (LJ) potential. Adjacent atoms along the surfactant chain are connected by finitely extensible harmonic springs. Solvent molecules move via the Metropolis random-walk algorithm, whereas surfactant molecules move according to the continuum configurational bias Monte Carlo (CBMC) method. We generate thermodynamic adsorption and surface-tension isotherms and compare results quantitatively to single-surfactant adsorption (Langmuir, 2007, 23, 1835). Surfactant tail groups with attractive interaction lead to cooperative adsorption at high surface coverage and higher maximum adsorption at the interface than those without. Moreover, adsorption and surface-tension isotherms with and without tail attraction are identical at low concentrations, deviating only near maximum coverage. Simulated binary mixtures of surfactants with differing lengths give intermediate behavior between that of the corresponding single-surfactant adsorption and surface-tension isotherms both with and without tail attraction. We successfully predict simulated mixture results with the thermodynamically consistent ideal adsorbed solution (IAS) theory for binary mixtures of unequal-sized surfactants using only the simulations from the single surfactants. Ultimately, we establish that a coarse-grained LJ surfactant system is useful for understanding actual surfactant systems when tail attraction is important and for unequal-sized mixtures of amphiphiles.  相似文献   

18.
The differential excess enthalpy of mixed micelle formation was measured at different temperatures by mixing nonionic hexa(ethylene glycol) mono n-dodecyl ether with anionic sodium dodecyl sulfate or cationic dodecylpyridinium chloride. The experimental data were obtained calorimetrically by titrating a concentrated surfactant solution into a micellar solution of nonionic surfactant. The composition and the size of the mixed nonionic/ionic micelles at different surfactant concentrations were also determined. Pronounced differences in both composition and excess enthalpy were found between the anionic and the cationic mixed system. For both systems, the excess enthalpies become more exothermic with increasing temperature, but for the anionic mixed system an additional exothermic contribution was found which was much less temperature dependent. Temperature dependence of the excess enthalpy was attributed to the effect of the ionic headgroup on the hydration of the ethylene oxide (EO) groups in the mixed corona. Ionic headgroups located in the ethylene oxide layer cause the dehydration of the EO chains resulting in an additional hydrophobic contribution to the enthalpy of mixing. A high affinity of sodium dodecyl sulfate for nonionic micelles and an extra exothermic and less temperature dependent contribution to the excess enthalpy found for the SDS-C(12)E(6) system might be attributed to specific interactions (hydrogen bonds) between the sulfate headgroup and the partly dehydrated EO chain.  相似文献   

19.
In the mixed micelles of an ionic surfactant (sodium dodecyl sulfate) with a nonionic surfactant (N-decanoyl-N-methylglucamide, hexaoxyethylene glycol-mono-n-decylether, and hexaoxyethylene glycol-mono-n-dodecylether), the critical mole fraction, Xic, of the ionic surfactant has been determined, below which the counterion is completely released from the micelles. The values of Xic are 0.074, 0.11, and 0.11, for the respective nonionic surfactants. The valences, i.e., the aggregation numbers of the ionic surfactant, of the mixed micelles at Xic are almost close to each other, around 6. At Xic, the critical surface charge density (about 0.03 Cm-2) for counterion condensation was tentatively calculated. In the present study, a differential conductivity method was applied.  相似文献   

20.
Stable vesicles composed of cationic and anionic single-tailed-surfactant were prepared, and their image obtained by electron microscopy with negative staining technique. Significant fluorescence enhancement for acridine orange in vesicle with regards to water has been observed. In heterogeneous vesicle solution composed of mixed cationic and anionic surfactants for the energy transfer between acridine orange (D) and pyronine (A), the Förster dipole-dipole model was valid, and it is interesting to note that the energy transfer rate constant (kET) was smaller than that in homogeneous aqueous solution. On the inside and outside of the stable vesicle, immiscible water solution of acridine orange and pyronine could be obtained, and the distance calculated from the energy transfer between D and A separated by the bilayer membrane implied that the location of ionic dye molecules was in the Gouy-Chapman layers of the vesicles. Furthermore, due to the electrostatic absorption of the dye molecules to charged headgroups of surfactants, acridine orange and pyronine accumulated and aggregated to the vesicle bilayer membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号