首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对带分批约束的混合无等待流水加工环境中干扰事件的出现导致初始调度计划发生偏离的问题,研究如何运用干扰管理理论来应对工件变更扰动情况,建立了兼顾最小化工件完工时间加权和指标(初始调度目标)和最小化工件完工滞后时间加权和指标(偏离校正目标)的干扰管理调度模型,提出了双层微粒群优化策略与随机多邻域搜索机制相结合的混合求解算法。数值算例仿真实验结果表明,包含“插入-交换”大概率邻域搜索算子的混合微粒群优化算法求解本文所构建的干扰管理调度模型是有效的。  相似文献   

2.
针对延迟工件数最小的混合流水车间调度问题,给出了一种改进的模拟退火求解算法. 该算法首先给出一个启发式算法来获得初始解,然后用模拟退火算法对初始解改进. 通过交换工件在第一阶段的排序来获得一个新的解,采用最先空闲设备分配规则和先到先被加工规则,对工件在剩余各级的工序进行调度. 实验仿真表明算法是可行有效的.  相似文献   

3.
针对由异速机构成的双机成比例无等待流水线的加工特点,研究了机器扰动工况下的生产重调度问题,提出了兼顾初始调度目标(最小化制造期)和扰动修复目标(最小化工件滞后时间和)的干扰管理方法。在最短加工时间优先(SPT)排序规则的最优解特性分析基础上,证明了右移初始加工时间表是事后干扰管理的最优调度方案,建立了基于SPT规则的事前干扰管理模型,设计了基于理想点趋近的多目标处理策略,提出了离散量子微粒群优化与局部搜索机制相结合的启发式模型求解算法。算例实验结果表明,本文提出的干扰管理模型和算法是有效的。  相似文献   

4.
In this paper, we address a two-machine flow shop scheduling problem under simple linear deterioration. By a simple linear deterioration function, we mean that the processing time of a job is a simple linear function of its execution start time. The objective is to find a sequence that minimizes total weighted completion time. Optimal schedules are obtained for some special cases. For the general case, several dominance properties and two lower bounds are derived to speed up the elimination process of a branch-and-bound algorithm. A heuristic algorithm is also proposed to overcome the inefficiency of the branch-and-bound algorithm. Computational analysis on randomly generated problems is conducted to evaluate the branch-and-bound algorithm and heuristic algorithm.  相似文献   

5.
This paper deals with the traditional permutation flow shop scheduling problem with the objective of minimizing mean flowtime, therefore reducing in-process inventory. A new heuristic method is proposed for the scheduling problem solution. The proposed heuristic is compared with the best one considered in the literature. Experimental results show that the new heuristic provides better solutions regarding both the solution quality and computational effort.  相似文献   

6.
蔡爽  杨珂  刘克 《运筹学学报》2018,22(4):17-30
考虑具有机器适用限制的多个不同置换流水车间的调度问题. 机器适用限制指的是每个工件只能分配到其可加工工厂集合. 所有置换流水车间拥有的机器数相同但是具有不同的加工能力. 首先, 针对该问题建立了基于位置的混合整数线性规划模型; 进而, 对一般情况和三种特殊情况给出了具有较小近似比的多项式时间算法. 其次, 基于NEH方法提出了启发式算法NEHg, 并给出了以NEHg为上界的分支定界算法. 最后, 通过例子说明了NEHg启发式算法和分支定界算法的计算过程, 并进行大量的实验将NEHg与NEH算法结果进行比较, 从而验证了NEHg算法的有效性.  相似文献   

7.
No-wait Job Shop Scheduling: Tabu Search and Complexity of Subproblems   总被引:4,自引:0,他引:4  
This paper deals with the no-wait job shop problem with a makespan objective. We present some new theoretical properties on the complexity of subproblems associated with a well-known decomposition approach. Justified by the complexity results, we implement a fast tabu search algorithm for the problem at hand. It is extensively tested on known benchmark instances and compares favorably to the best existing algorithms for the no-wait job shop as well as the no-wait flow shop.  相似文献   

8.
The paper presents a tight Lagrangian bound and an efficient dual heuristic for the flow interception problem. The proposed Lagrangian relaxation decomposes the problem into two subproblems that are easy to solve. Information from one of the subproblems is used within a dual heuristic to construct feasible solutions and is used to generate valid cuts that strengthen the relaxation. Both the heuristic and the relaxation are integrated into a cutting plane method where the Lagrangian bound is calculated using a subgradient algorithm. In the course of the algorithm, a valid cut is added and integrated efficiently in the second subproblem and is updated whenever the heuristic solution improves. The algorithm is tested on randomly generated test problems with up to 500 vertices, 12,483 paths, and 43 facilities. The algorithm finds a proven optimal solution in more than 75% of the cases, while the feasible solution is on average within 0.06% from the upper bound.  相似文献   

9.
In this paper we study the NP-hard scheduling problem of minimizing total completion time in a two-machine flow shop. Five known lower bounds are discussed and two new ones are presented. A new dominance criterion is also proposed. Several versions of a branch and bound method are derived by applying, both individually and combined, these lower bounds. A heuristic procedure is also presented that uses a constructive O(n2) time method, which computes a good starting solution, together with a neighborhood search based on pairwise interchanges. Computational results show that the exact method can handle problems of up to 30 jobs in size within a reasonable amount of time and that the heuristic procedure has an average error of less than 0.5% from the optimal value and less than 2.7% from the lower bound.  相似文献   

10.
We consider the m-machine no-wait flowshop scheduling problem with the objective of minimizing a weighted sum of makespan and total completion time. For the two-machine problem, we develop a dominance relation and embed it within a proposed branch-and-bound algorithm. For the m-machine problem, we propose a heuristic. Computational experiments show that the proposed heuristic outperforms the best existing multi-criteria heuristics and the best single criterion heuristics for makespan and total completion time. The efficiency of the dominance relation and branch-and-bound algorithm is also investigated and shown to be effective.  相似文献   

11.
A bi-criteria group scheduling problem in a flow shop with sequence-dependent setup time is investigated in this paper. Manufacturing cell and flow shop are two popular scenarios in industry. Dynamic job releases and machine availabilities are assumed. The goal is to minimize the weighted sum of total weighted completion time and total weighted tardiness, which are aimed at satisfying the producer and customer goals separately. Normalized weights are assigned to both criteria to describe the trade-off between the two objectives. Two different initial solution finding mechanisms are proposed, and a tabu-search-based two-level search algorithm is deve1loped to find optimal/near-optimal solutions for the problem. A mathematical model is also developed and implemented to evaluate the optimality of the results from search algorithms for small problem instances. To further uncover the difference in performance of initial solutions and algorithms, an experimental design is performed and results are reported.  相似文献   

12.
In many practical situations, batching of similar jobs to avoid setups is performed while constructing a schedule. This paper addresses the problem of non-preemptively scheduling independent jobs in a two-machine flow shop with the objective of minimizing the makespan. Jobs are grouped into batches. A sequence independent batch setup time on each machine is required before the first job is processed, and when a machine switches from processing a job in some batch to a job of another batch. Besides its practical interest, this problem is a direct generalization of the classical two-machine flow shop problem with no grouping of jobs, which can be solved optimally by Johnson's well-known algorithm. The problem under investigation is known to be NP-hard. We propose two O(n logn) time heuristic algorithms. The first heuristic, which creates a schedule with minimum total setup time by forcing all jobs in the same batch to be sequenced in adjacent positions, has a worst-case performance ratio of 3/2. By allowing each batch to be split into at most two sub-batches, a second heuristic is developed which has an improved worst-case performance ratio of 4/3. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.  相似文献   

13.
We consider the general problem of static scheduling of a set of jobs in a network flow shop. In network flow shops, the scheduler not only has to sequence and schedule but also must concurrently determine the process routing of the jobs through the shop. In this paper, we establish the computational complexity of this new class of scheduling problem and propose a general purpose heuristic procedure. The performance of the heuristic is analyzed when makespan, cycle time and average flow time are the desired objectives.This research has been supported by the UCLA Academic Senate Grant #95.  相似文献   

14.
A hybrid flow shop scheduling problem (HFSP) with assembly operations is studied in this paper. In the considered problem, a number of products of the same kind are produced. Each product is assembled using a set of several parts. At first, the parts are produced in a hybrid flow shop and then they are assembled in an assembly stage to produce products. The considered objective is to minimize the completion time of all products (makespan). This problem has been proved strongly NP-hard, so in order to solve it, a hierarchical branch and bound algorithm is presented. Also, some lower and upper bounds are developed to increase the efficiency of the proposed algorithm. The numerical experiments are used to evaluate the performance of the proposed algorithm.  相似文献   

15.
It is well known that a local search method, a widely used approach for solving the permutation flow shop scheduling problem, can easily be trapped at a local optimum. In this paper, we propose two escape-from-trap procedures to move away from local optima. Computational experiments carried out on a standard set of instances show that this heuristic algorithm generally outperforms an effective approximation algorithm.  相似文献   

16.
It is well-known that exact branch and bound methods can only solve small or moderately sized ????-hard combinatorial optimization problems. In this paper, we address the issue of embedding an approximate branch and bound algorithm into a local search framework. The resulting heuristic has been applied to the problem of finding a minimum makespan in the permutation flow shop problem. Computational experiments carried out on a large set of benchmark problems show that the proposed method consistently yields optimal or near-optimal solutions for instances with up to 200 jobs and 10 machines. In particular, for 19 instances, the heuristic produces solutions that outperform the best known ones.  相似文献   

17.
We consider the problem of minimizing the maximum lateness in a m-machine flow shop subject to release dates. The objective of this paper is to develop a new branch-and-bound algorithm to solve exactly this strongly NP-hard problem. The proposed branch-and-bound algorithm encompasses several features including a procedure for adjusting heads and tails, heuristics, and a lower bounding procedure, which is based on the exact solution of the two-machine flow shop problem with time lags, ready times, and delivery times. Extensive computational experiments show that instances with up to 6000 operations can be solved exactly in a moderate CPU time.  相似文献   

18.
This paper deals with performance evaluation and scheduling problems in m machine stochastic flow shop with unlimited buffers. The processing time of each job on each machine is a random variable exponentially distributed with a known rate. We consider permutation flow shop. The objective is to find a job schedule which minimizes the expected makespan. A classification of works about stochastic flow shop with random processing times is first given. In order to solve the performance evaluation problem, we propose a recursive algorithm based on a Markov chain to compute the expected makespan and a discrete event simulation model to evaluate the expected makespan. The recursive algorithm is a generalization of a method proposed in the literature for the two machine flow shop problem to the m machine flow shop problem with unlimited buffers. In deterministic context, heuristics (like CDS [Management Science 16 (10) (1970) B630] and Rapid Access [Management Science 23 (11) (1977) 1174]) and metaheuristics (like simulated annealing) provide good results. We propose to adapt and to test this kind of methods for the stochastic scheduling problem. Combinations between heuristics or metaheuristics and the performance evaluation models are proposed. One of the objectives of this paper is to compare the methods together. Our methods are tested on problems from the OR-Library and give good results: for the two machine problems, we obtain the optimal solution and for the m machine problems, the methods are mutually validated.  相似文献   

19.
This paper addresses the flow shop sequencing problem. Following an investigation of the problem characteristics, a property of this scheduling problem is presented, and is used for the development of a new constructive heuristic with the objective of minimizing the total time to complete the schedule (makespan). The new method, denoted by N&M, is compared with the best constructive heuristic reported in the literature, named NEH. Results from computational experience have shown that for problems having up to 10 machines and 100 jobs, the new heuristic outperforms, on average, the NEH heuristic. There is no significant difference regarding computation effort for both NEH and N&M heuristics.  相似文献   

20.
The paper deals with a two-machine flow shop scheduling problem in which both the sequence of jobs and their processing times are decision variables. It is assumed that the cost of performing a job is a linear function of its processing time, and the schedule cost to be minimized is the total processing cost plus maximum completion time cost. In is shown that the decision form of this problem is NP-complete, even when the processing times on one machine only are controllable and all the processing cost units are identical. Two heuristic methods for solving the problem are proposed and their worst-case analysis is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号