首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We find the Lie point symmetries of a class of second-order nonlinear diffusion–convection–reaction equations containing an unspecified coefficient function of the independent variable t and determine the subclasses of these equations which are nonlinearly self-adjoint. By using a general theorem on conservation laws proved recently by N.H. Ibragimov we establish conservation laws corresponding to the aforementioned Lie point symmetries, one by one, for the simultaneous system of the original equation together with its adjoint equation through a formal Lagrangian. Particularly, for the nonlinearly self-adjoint subclasses, we construct conservation laws for the corresponding equations themselves.  相似文献   

2.
Conservation Laws and Potential Symmetries of Linear Parabolic Equations   总被引:1,自引:0,他引:1  
We carry out an extensive investigation of conservation laws and potential symmetries for the class of linear (1+1)-dimensional second-order parabolic equations. The group classification of this class is revised by employing admissible transformations, the notion of normalized classes of differential equations and the adjoint variational principle. All possible potential conservation laws are described completely. They are in fact exhausted by local conservation laws. For any equation from the above class the characteristic space of local conservation laws is isomorphic to the solution set of the adjoint equation. Effective criteria for the existence of potential symmetries are proposed. Their proofs involve a rather intricate interplay between different representations of potential systems, the notion of a potential equation associated with a tuple of characteristics, prolongation of the equivalence group to the whole potential frame and application of multiple dual Darboux transformations. Based on the tools developed, a preliminary analysis of generalized potential symmetries is carried out and then applied to substantiate our construction of potential systems. The simplest potential symmetries of the linear heat equation, which are associated with single conservation laws, are classified with respect to its point symmetry group. Equations possessing infinite series of potential symmetry algebras are studied in detail.  相似文献   

3.
We show that the four‐dimensional Martínez Alonso–Shabat equation is nonlinearly self‐adjoint with differential substitution and the required differential substitution is just the admitted adjoint symmetry and vice versa. By means of computer algebra system, we obtain a number of local and nonlocal symmetries admitted by the equations under study. Then such symmetries are used to construct conservation laws of the equation under study and its reductions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Integrating factors and adjoint equations are determined for linear and non-linear differential equations of an arbitrary order. The new concept of an adjoint equation is used for construction of a Lagrangian for an arbitrary differential equation and for any system of differential equations where the number of equations is equal to the number of dependent variables. The method is illustrated by considering several equations traditionally regarded as equations without Lagrangians. Noether's theorem is applied to the Maxwell equations.  相似文献   

5.
It is known (Ibragimov, 2011; Galiakberova and Ibragimov, 2013) [14,18] that the property of nonlinear self-adjointness allows to associate conservation laws of the equations under study, with their symmetries. In this paper we show that, even when the equation is nonlinearly self-adjoint with a non differential substitution, finding the explicit form of the differential substitution can provide new conservation laws associated to its symmetries. By using the general theorem on conservation laws (Ibragimov, 2007) [11] and the property of nonlinear self-adjointness we find some new conservation laws for the modified Harry-Dym equation. By using a differential substitution we construct a conservation law for the Harry-Dym equation, which has not been derived before using Ibragimov method.  相似文献   

6.
A new general theorem, which does not require the existence of Lagrangians, allows to compute conservation laws for an arbitrary differential equation. This theorem is based on the concept of self-adjoint equations for nonlinear equations. In this paper we show that the Zakharov–Kuznetsov equation is self-adjoint and nonlinearly self-adjoint. This property is used to compute conservation laws corresponding to the symmetries of the equation. In particular the property of the Zakharov–Kuznetsov equation to be self-adjoint and nonlinearly self-adjoint allows us to get more conservation laws.  相似文献   

7.
In this work we consider a class of fourth-order nonlinear partial differential equation containing several un-specified coefficient functions of the dependent variable which encapsulates various mathematical models used, e.g. for describing the dynamics of thin liquid films. We determine the subclasses of these equations which are self-adjoint. By using a general theorem on conservation laws proved by one of the authors (NHI) we find conservation laws for some of these partial differential equations without classical Lagrangians.  相似文献   

8.
This paper presents a relation between divergence variational symmetries for difference variational problems on lattices and conservation laws for the associated Euler–Lagrange system provided by Noether's theorem. This inspires us to define conservation laws related to symmetries for arbitrary difference equations with or without Lagrangian formulations. These conservation laws are constrained by partial differential equations obtained from the symmetries generators. It is shown that the orders of these partial differential equations have been reduced relative to those used in a general approach. Illustrative examples are presented.  相似文献   

9.
首先,我们给出了引入伴随方程(组)扩充原方程(组)的策略使给定偏微分方程(组)的扩充方程组具有对应泛瓯即,成为Lagrange系统的方法,以此为基础提出了作为偏微分方程(组)传统守恒律和对称概念的一种推广-偏微分方程(组)扩充守恒律和扩充对称的概念;其次,以得到的Lagrange系统为基础给定了确定原方程(组)扩充守恒律和扩充对称的方法,从而达到扩充给定偏微分方程(组)的首恒律和对称的目的;第三,提出了适用于一般形式微分方程(组)的计算固有守恒律的方法;第四,实现以上算法过程中,我们先把计算(扩充)守恒律和对称问题均归结为求解超定线性齐次偏微分方程组(确定方程组)的问题.然后,对此关键问题我们提出了用微分形式吴方法处理的有效算法;最后,作为方法的应用我们计算确定了非线性电报方程组在内的五个发展方程(组)的新守恒律和对称,同时也说明了方法的有效性.  相似文献   

10.
This paper mainly contributes to the extension of Noether's theorem to differential‐difference equations. For this purpose, we first investigate the prolongation formula for continuous symmetries, which makes a characteristic representation possible. The relations of symmetries, conservation laws, and the Fréchet derivative are also investigated. For nonvariational equations, because Noether's theorem is now available, the self‐adjointness method is adapted to the computation of conservation laws for differential‐difference equations. Several differential‐difference equations are investigated as illustrative examples, including the Toda lattice and semidiscretizations of the Korteweg–de Vries (KdV) equation. In particular, the Volterra equation is taken as a running example.  相似文献   

11.
The problem of correspondence between symmetries and conservation laws for one-layer shallow water wave systems in the plane flow, axisymmetric flow and dispersive waves is investigated from the composite variational principle of view in the development of the study [N.H. Ibragimov, A new conservation theorem, Journal of Mathematical Analysis and Applications, 333(1) (2007) 311–328]. This method is devoted to construction of conservation laws of non-Lagrangian systems. Composite principle means that in addition to original variables of a given system, one should introduce a set of adjoint variables in order to obtain a system of Euler–Lagrange equations for some variational functional. After studying Lie point and Lie–Bäcklund symmetries, we obtain new local and nonlocal conservation laws. Nonlocal conservation laws comprise nonlocal variables defined by the adjoint equations to shallow water wave systems. In particular, we obtain infinite local conservation laws and potential symmetries for the plane flow case.  相似文献   

12.
The concepts of self-adjoint and quasi self-adjoint equations were introduced by Ibragimov (2006, 2007) [4], [7]. In Ibragimov (2007) [6] a general theorem on conservation laws was proved. In Gandarias (2011) [3] we generalized the concept of self-adjoint and quasi self-adjoint equations by introducing the definition of weak self-adjoint equations. In this paper we find the subclasses of weak self-adjoint porous medium equations. By using the property of weak self-adjointness we construct some conservation laws associated with symmetries of the differential equation.  相似文献   

13.
In the search for solutions to the important partial differential equation due to Black, Scholes and Merton potential symmetries are very useful as new solutions of the equation can be obtained as a result. These potential symmetries require that the equation be written in conserved form, ie. we need to determine conservation laws for the equation. We calculate the conservation laws utilizing the point symmetries of the equation following the method of Kara and Mahomed [A.H. Kara, F.M. Mahomed, The relationship between symmetries and conservation laws, Int. J. Theor. Phys. 39 (2000) 23–40].  相似文献   

14.
Two formulas are introduced to directly obtain new conservation laws for any system of partial differential equations from a known conservation law and admitted symmetries. The first formula maps any conservation law of a given system to the corresponding conservation law of the system obtained through a contact transformation. When the contact transformation is a symmetry of the given system, then the corresponding conservation law is a conservation law of the given system. The second formula checks a priori whether or not the action of a symmetry (continuous or discrete) on a conservation law can yield one or more new conservation laws of the given system. Several examples are considered, including the use of a discrete symmetry to obtain a new conservation law and the use of a continuous symmetry to generate two new conservation laws.  相似文献   

15.
耦合KdV方程组的对称,精确解和守恒律   总被引:1,自引:0,他引:1  
通过利用修正的CK直接方法建立了耦合KdV方程组的对称群理论.利用对称群理论和耦合KdV方程组的旧解得到了它们的新的精确解.基于上述理论和耦合KdV方程组的共轭方程组的理论,得到了耦合KdV方程组的守恒律.  相似文献   

16.
A method for computing symmetries and conservation laws of integro-differential equations is proposed. It resides in reducing an integro-differential equation to a system of boundary differential equations and in computing symmetries and conservation laws of this system. A geometry of boundary differential equations is constructed like the differential case. Results of the computation for the Smoluchowski's coagulation equation are given.  相似文献   

17.
We concentrate on Lie symmetries and conservation laws of the Fokker-Planck equation with power diffusion describing the growth of cell populations. First, we perform a complete symmetry classification of the equation, and then we find some interesting similarity solutions by means of the symmetries and the variable coefficient heat equation. Local dynamical behaviors are analyzed via the solutions for the growing cell populations. Second, we show that the conservation law multipliers of the equation take the form Λ=Λ(t,x,u), which satisfy a linear partial differential equation, and then give the general formula of conservation laws. Finally, symmetry properties of the conservation law are investigated and used to construct conservation laws of the reduced equations.  相似文献   

18.
利用经典李群方法得到了Landau-Lifshitz方程不变群的无穷小生成元,验证其对换位运算构成一个七维的李代数,得到了对应的群不变解,建立了Landau-Lifshit,z新解和旧解之间的关系.同时利用对称和共轭方程组求得了Landau-Lifshitz方程的守恒律.  相似文献   

19.
Classifications of symmetries and conservation laws are presented for a variety of physically and analytically interesting wave equations with power nonlinearities in n spatial dimensions: a radial hyperbolic equation, a radial Schrödinger equation and its derivative variant, and two proposed radial generalizations of modified Korteweg-de Vries equations, as well as Hamiltonian variants. The mains results classify all admitted local point symmetries and all admitted local conserved densities depending on up to first order spatial derivatives, including any that exist only for special powers or dimensions. All such cases for which these wave equations admit, in particular, dilational energies or conformal energies and inversion symmetries are determined. In addition, potential systems arising from the classified conservation laws are used to determine nonlocal symmetries and nonlocal conserved quantities admitted by these equations. As illustrative applications, a discussion is given of energy norms, conserved Hs norms, critical powers for blow-up solutions, and one-dimensional optimal symmetry groups for invariant solutions.  相似文献   

20.
In Ibragimov (2007) [13] a general theorem on conservation laws was proved. In Gandarias (2011) and Ibragimov (2011) [7], [15] the concepts of self-adjoint and quasi self-adjoint equations were generalized and the definitions of weak self-adjoint equations and nonlinearly self-adjoint equations were introduced. In this paper, we find the subclasses of nonlinearly self-adjoint porous medium equations. By using the property of nonlinear self-adjointness, we construct some conservation laws associated with classical and nonclassical generators of the differential equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号