首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article looks at the slip effects on the flow and heat transfer of a third grade fluid past a porous plate. The resulting equations and boundary conditions are non-linear. The non-linear boundary condition is reduced into a linear one and a series solution of the problem is obtained using the homotopy analysis method (HAM). Variations of interesting parameters are seen on the velocity and temperature profiles.  相似文献   

2.
The similarity solution for the unsteady laminar incompressible boundary layer flow of a viscous electrically conducting fluid in stagnation point region of an impulsively rotating and translating sphere with a magnetic field and a buoyancy force gives a system of non-linear partial differential equations. These non-linear differential equations are analytically solved by applying a newly developed method, namely the homotopy analysis method (HAM). The analytic solutions of the system of non-linear differential equations are constructed in the series form. The convergence of the obtained series solutions is carefully analyzed. Graphical results are presented to investigate the influence of the magnetic parameter, buoyancy parameter and rotation parameter on the surface shear stresses and surface heat transfer. It is noted that the behavior of the HAM solution for the surface shear stresses and surface heat transfer is in good agreement with the numerical solution given in reference [H. S. Takhar, A. J. Chamkha, G. Nath, Unsteady laminar MHD flow and heat transfer in the stagnation region of an impulsively spinning and translating sphere in the presence of buoyancy forces, Heat Mass Transfer 37 (2001) 397].  相似文献   

3.
It is shown that the solution to the boundary-initial value problem for a heat-conducting viscous fluid depends continuously on changes in the heat supply function, for the improperly posed backward in time problem. A non-linear convection threshold is also determined for the problem of a layer of fluid heated internally (non-uniformly), with zero neat flux on the lower boundary and constant-temperature upper surface.  相似文献   

4.
提出了非一致性界面热流固耦合作用整体求解的一种方法.热流体求解基于Boussinesq假设和不可压缩的Navier-Stokes方程.流体区域的运动采用任意Lagrange-Euler(ALE)方法.拟固体元方法实现流体区域的变形.使用几何非线性的热弹性动力学描述固体运动.为了保证界面处应力和传热的平衡,采用了基于Gauss积分点的数据交换方法,对热流固耦合最终形成的强非线性方程实现整体求解.数值实例分析表明该方法的健壮性和有效性.  相似文献   

5.
This work deals with a free boundary identification problem in a steady viscoplastic flow. We provide a novel identification model based on a non-linear optimization. The fluid motion is governed by the incompressible Norton–Hoff model coupled with the heat equation. The viscosity of the fluid is modeled by the non-linear Arrhenius law. Our point of view is to treat the problem as a shape sensitivity of a cost functional formulated on the free boundary and governed by the normal component of the velocity of the flow. We analyze the mathematical statement of the forward problem. The equations related to the free boundary are simplified. Various properties of this optimization are proved. Since the state of Norton–Hoff model is not regular enough we introduce a parameter penalization. The shape gradient of the considered cost functional is given in the strong sense up to the parameter of penalization. We supply the expression of the shape gradient in a weak sense.  相似文献   

6.
The laminar flow and heat transfer of an incompressible, third grade, electrically conducting fluid impinging normal to a plane in the presence of a uniform magnetic field is investigated. The heat transfer analysis has been carried out for two heating processes, namely, (i) with prescribed surface temperature (PST-case) and (ii) prescribed surface heat flux (PHF-case). By means of the similarity transformation, the governing non-linear partial differential equations are reduced to a system of non-linear ordinary differential equations and are solved by a second-order numerical technique. Effects of various non-Newtonian fluid parameters, magnetic parameter, Prandtl number on the velocity and temperature fields have been investigated in detail and shown graphically. It is found that the velocity gradient at the wall decreases as the third grade fluid parameter increases.  相似文献   

7.
An analysis has been performed to study the natural convection of a non-Newtonian fluid between two infinite parallel vertical flat plates and the effects of the non-Newtonian nature of fluid on the heat transfer are studied. The governing boundary layer and temperature equations for this problem are reduced to an ordinary form and are solved by homotopy analysis method (HAM), and numerical method. Velocity and temperature profiles are shown graphically. The obtained results are valid for the whole solution domain with high accuracy. These methods can be easily extended to other linear and non-linear equations and so can be found widely applicable in engineering and sciences.  相似文献   

8.
An analysis has been carried out to study the magnetohydrodynamic boundary layer flow and heat transfer characteristics of a non-Newtonian viscoelastic fluid over a flat sheet with a linear velocity in the presence of thermal radiation and non-uniform heat source. The thermal conductivity is assumed to vary as a linear function of temperature. The basic equations governing the flow and heat transfer are in the form of partial differential equations, the same have been reduced to a set of non-linear ordinary differential equations by applying suitable similarity transformation. The transformed equations are solved analytically by regular perturbation method. Numerical solution of the problem is also obtained by the efficient shooting method, which agrees well with the analytical solution. The effects of various physical parameters such as viscoelastic parameter, Chandrasekhar number, Prandtl number, variable thermal conductivity parameter, Eckert number, thermal radiation parameter and non-uniform heat source/sink parameters which determine the temperature profiles are shown in several plots and the heat transfer coefficient is tabulated for a range of values of said parameters. Some important findings reported in this work reveals that combined effect of variable thermal conductivity, radiation and non-uniform heat source have significant impact in controlling the rate of heat transfer in the boundary layer region.  相似文献   

9.
This paper presents a mathematical analysis of MHD flow and heat transfer to a laminar liquid film from a horizontal stretching surface. The flow of a thin fluid film and subsequent heat transfer from the stretching surface is investigated with the aid of similarity transformation. The transformation enables to reduce the unsteady boundary layer equations to a system of non-linear ordinary differential equations. Numerical solution of resulting non-linear differential equations is found by using efficient shooting technique. Boundary layer thickness is explored numerically for some typical values of the unsteadiness parameter S and Prandtl number Pr, Eckert number Ec and Magnetic parameter Mn. Present analysis shows that the combined effect of magnetic field and viscous dissipation is to enhance the thermal boundary layer thickness.  相似文献   

10.
A non-stationary problem of free convection from a point heat source in a stratified fluid is considered. The system of equations is reduced to a single equation for a special scalar function which determinos the velocity field, and the temperature and salinity distribution. Relations are found connecting the spatial and temporal scales of the phenomenon with the parameters of the medium and the intensity of the heat source. The magnitude of the critical source intensity at which the fluid begins to move in a jet-flow mode is established.The structure of convective flows above the heat sources depends, in the stratified media, essentially on the nature of the stratification /1/ which may be caused by a change in the temperature of the medium /2, 3/ or its salinity /4–7/, and by the form of the heat source. When a temperature gradient exists within the medium, an ascending jet forms above the point source, mushrooming outwards near the horizon of the hydrostatic equilibrium. In the case of a fluid with salinity gradient, the jet is surrounded by a sheet of descending salty fluid, and a regular system of annular convective cells is formed around it /1/.The height of the stationary jet computed in /2, 3/ on the basis of conservative laws agrees with experiment. However, this approach does not enable the temperature and velocity distribution over the whole space to be found and does not enable the problem of determining the flow to be investigated. A stationary solution of the linearized convection equations /8/ does not correspond to detail to the observed flow pattern /1, 5–7/. In this connection the study of the non-linear, non-stationary convection equations is of interest.The purpose of this paper is to construct a non-linear, non-stationary free convection equation above a point heat source, and to analyse the scales of the resulting structure and the critical conditions under which the flow pattern changes.  相似文献   

11.
An analysis has been carried out to study the momentum and heat transfer characteristics in an incompressible electrically conducting non-Newtonian boundary layer flow of a viscoelastic fluid over a stretching sheet. The partial differential equations governing the flow and heat transfer characteristics are converted into highly non-linear coupled ordinary differential equations by similarity transformations. The effect of variable fluid viscosity, Magnetic parameter, Prandtl number, variable thermal conductivity, heat source/sink parameter and thermal radiation parameter are analyzed for velocity, temperature fields, and wall temperature gradient. The resultant coupled highly non-linear ordinary differential equations are solved numerically by employing a shooting technique with fourth order Runge–Kutta integration scheme. The fluid viscosity and thermal conductivity, respectively, assumed to vary as an inverse and linear function of temperature. The analysis reveals that the wall temperature profile decreases significantly due to increase in magnetic field parameter. Further, it is noticed that the skin friction of the sheet decreases due to increase in the Magnetic parameter of the flow characteristics.  相似文献   

12.
This article presents a numerical solution for the magnetohydrodynamic (MHD) non-Newtonian power-law fluid flow over a semi-infinite non-isothermal stretching sheet with internal heat generation/absorption. The flow is caused by linear stretching of a sheet from an impermeable wall. Thermal conductivity is assumed to vary linearly with temperature. The governing partial differential equations of momentum and energy are converted into ordinary differential equations by using a classical similarity transformation along with appropriate boundary conditions. The intricate coupled non-linear boundary value problem has been solved by Keller box method. It is important to note that the momentum and thermal boundary layer thickness decrease with increase in the power-law index in presence/absence of variable thermal conductivity.  相似文献   

13.
We present a method for the solution of transient flow in a multi-port fluid device with arbitrary geometry. The method is applicable to fluid devices where the fluid motion is primarily inviscid throughout the volume, but locally near a device port some accommodation to viscous flow is introduced. The internal flow is characterized by an array of purely geometrical factors between ports, essentially a set of generalized impedances; the state variables elicited are the average volume flow rates through the device ports. The method creates a set of coupled non-linear time-dependent ordinary differential equations. The solution to this set of equations is much faster, typically by orders of magnitude, than a single run of a transient CFD model. We demonstrate our method with a simple example; we show that the results of the method agree well with a full CFD calculation.  相似文献   

14.
We study the coupling of the system of magnetohydrodynamics to the heat equation in the context of an application to crystal growth. The heat sources are given by the dissipation of current that occurs in the fixed conductors of the system. According to Boussinesq’s model, the dissipative heating is neglected in the fluid. We take into account the natural interface conditions for the magnetic field, and nonlocal radiation boundary conditions for the heat flux. We prove the existence of a weak solution with a defect measure, concentrated in a singular set.  相似文献   

15.
A system of partial differential equations describing the thermal behavior of aluminium cell coupled with magnetohydrodynamic effects is numerically solved. The thermal model is considered as a two-phases Stefan problem which consists of a non-linear convection–diffusion heat equation with Joule effect as a source. The magnetohydrodynamic fields are governed by Navier–Stokes and by static Maxwell equations. A pseudo-evolutionary scheme (Chernoff) is used to obtain the stationary solution giving the temperature and the frozen layer profile for the simulation of the ledges in the cell. A numerical approximation using a finite element method is formulated to obtain the fluid velocity, electrical potential, magnetic induction and temperature. An iterative algorithm and 3-D numerical results are presented.  相似文献   

16.
The two dimensional Couette flow of a non-homogeneous viscous fluid is studied. The plane boundaries of the channel are maintained at different temperatures. The upper plane moves with a uniform horizontal velocity and the lower plane is at rest. The fluid is subjected to suction and injection at the boundaries. Thesteady equations are solved by introducing similarity variables which are expanded in series of powers of a small stratification parameter. The non-linear theory predicts that the temperature depends on the distancex from the throat section, an observation which is not predicted by the linear theory. The non-linear effects on velocity and temperature are studied. The rate of heat transfer is discussed.  相似文献   

17.
In this present article an analysis is carried out to study the boundary layer flow behavior and heat transfer characteristics in Walter’s liquid B fluid flow. The stretching sheet is assumed to be impermeable, the effects of viscous dissipation, non-uniform heat source/sink in the presence and in the absence of elastic deformation (which was escaped from attention of researchers while formulating the viscoelastic boundary layer flow problems)on heat transfer are addressed. The basic boundary layer equations for momentum and heat transfer, which are non-linear partial differential equations, are converted into non-linear ordinary differential equations by means of similarity transformation. Analytical solutions are obtained for the resulting boundary value problems. The effects of viscous dissipation, Prandtl number, Eckert number and non-uniform heat source/sink on heat transfer (in the presence and in the absence of elastic deformation) are shown in several plots and discussed. Analytical expressions for the wall frictional drag coefficient, non-dimensional wall temperature gradient and non-dimensional wall temperature are obtained and are tabulated for various values of the governing parameters. The present study reveals that, the presence of work done by deformation in the energy equation yields an augment in the fluid’s temperature.  相似文献   

18.
The article analyzes a two-dimensional phase-field model for a non-stationary process of solidification of a binary alloy with thermal properties. The model allows the occurrence of fluid flow in non-solid regions, which are a priori unknown, and is thus associated to a free boundary value problem for a highly non-linear system of partial differential equations. These equations are the phase-field equation, the heat equation, the concentration equation and a modified Navier-Stokes equations obtained by the addition of a penalization term of Carman-Kozeny type which accounts for the mushy effects. A proof of existence of weak solutions for such system is given. The problem is firstly approximated and a sequence of approximate solutions is obtained by Leray-Schauder fixed point theorem. A solution is then found by using compactness argument.  相似文献   

19.
Steady mixed convection micropolar fluid flow towards stagnation point formed on horizontal linearly stretchable melting surface is studied. The vortex viscosity of micropolar fluid along a melting surface is proposed as a constant function of temperature while dynamic viscosity and thermal conductivity are temperature dependent due to the influence of internal heat source on the fluid. Similarity transformations were used to convert the governing equation into non-linear ODE and solved numerically. A parametric study is conducted. An analysis of the results obtained shows that the flow-field is influenced appreciably by heat source, melting, velocity ratio, variable viscosity and thermal conductivity.  相似文献   

20.
A computation technique based on the finite element method is presented for the non-linear thermal response of structures submitted to fire environments. The incremental equations which result from the associated non-linear heat transfer problem are solved by a non-iterative solution technique based on the concept of ‘tangential’ conductivity. Computational efficiency is illustrated by comparison with experimental results recorded during fire tests of concrete structural elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号