首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We present a comprehensive investigation of the volume transition in thermosensitive core-shell particles. The particles consist of a solid core of poly (styrene) (radius: 52 nm) onto which a network of crosslinked poly(N-isopropylacrylamide) (PNIPAM) is affixed. The degree of crosslinking of the PNIPAM shell effected by the crosslinker N,N -methylenebisacrylamide was varied between 1.25 and 5 mol%. Immersed in water, the shell of these particles is swollen at low temperatures. Raising the temperature above 32°C leads to a volume transition within the shell. Cryogenic transmission electron microscopy (Cryo-TEM) and dynamic light scattering (DLS) have been used to investigate the structure and swelling of the particles. The Cryo-TEM micrographs directly show inhomogeneities of the network. Moreover, a buckling of the shell from the core particle is evident. This buckling increases with decreasing degree of crosslinking. A comparison of the overall size of the particles determined by DLS and Cryo-TEM demonstrates that the hydrodynamic radius provides a valid measure for the size of the particles. The phase transition within the network measured by DLS can be described by the Flory–Rehner theory. It is shown that this model captures the main features of the volume transition within the core-shell particles including the dependence of the phase transition on the degree of crosslinking. All dispersions crystallize at volume fractions above 0.5. The resulting phase diagram is identical to the phase behavior of hard spheres within the limits of error. This demonstrates that the core-shell microgels can be treated as hard spheres up to volume fractions of at least 0.55.  相似文献   

2.
We present a survey over recent studies of the volume transition in colloidal core-shell particles composed of a solid poly(styrene) core and a shell of a thermosensitive crosslinked polymer chains. The thermosensitive shell is built up from poly(N-isopropylacrylamide) chains (PNIPA) crosslinked by N,N′-methylenbisacrylamide (BIS). In addition, particles containing acrylic acid (AA) as comonomer have been synthesized and investigated. The volume transition of these particles have been studied by dynamic light scattering (DLS) and by small-angle X-ray scattering (SAXS). In all cases analyzed so far the volume transition was found to be continuous. This finding shows that the core-shell microgels behave in a distinctively different manner than ordinary thermosensitive gels: The crosslinked chains in the shell are bound to a solid boundary independent of temperature. The spatial constraint by this boundary decreases the maximum degree of swelling but also prevents a full collapse of the network above the volume transition.  相似文献   

3.
We report the formation of novel thermosensitive hybrid core-shell particles via in situ synthesis of gold nanoparticles using thermosensitive core-shell particles as a template. The template core-shell particles, with cores composed mainly of poly(glycidyl methacrylate) (GMA) and shells composed mainly of poly(N-isopropylacrylamide) (PNIPAM), were synthesized in aqueous medium, and functional groups such as thiol groups were incorporated into each particle. We found that these particles containing thiol groups were effective for the in situ synthesis of gold nanoparticles in long-term storage. The obtained hybrid particles exhibited a reversible color change from red to purple, which originated from the surface plasmon resonance of gold nanoparticles and which was temperature-dependent in the range of 25-40 degrees C. In addition to their thermosensitive property, the hybrid particles exhibited the unique characteristic of uniform distribution on a solid substrate. The particles obtained by this approach have potential thermosensitive applications such as in sensors and photonic or electronic devices.  相似文献   

4.
Core-shell microgels made of the thermoresponsive polymer poly(N-isopropylacrylamide) (PNIPAM) and silica nanoparticles as inorganic cores were investigated by dynamic light scattering (DLS) and small angle neutron scattering (SANS). In order to study the response of the particles upon changes of temperature, experiments were done in a temperature interval close to the volume phase transition temperature of the PNIPAM shell. While DLS probes the hydrodynamic dimensions of the particles, determining their centre of mass diffusion, SANS provides the correlation length xi of the PNIPAM network. Additionally, the composite particles were characterised by electron microscopy as well as atomic force microscopy to reveal the core-shell structure and at the same time the approximate dimensions and the shape of the microgels.  相似文献   

5.
The adsorption of a rhodamine X labeled oligonucleotide composed of 25-mers of thymine (dT(25)-ROX) onto the thermosensitive shell of PMMA/PNIPAM core-shell latex particles was studied at 22 and 40 degrees C, below and above the T(VPT) (volume phase transition temperature) of the PNIPAM shell, respectively. The experimental binding isotherms were well fitted with the cooperative Hill model. The Hill coefficient is lower than 1 at both temperatures showing that the adsorption is anticooperative. The polarity of the shell was probed by both the lifetimes and solvatochromic shifts of the zwitterionic form of rhodamine X. For temperatures below the shell T(VPT) has a polarity similar to that of water, while for temperatures above the transition the polarity is equivalent to that of a water/dioxane mixture with 30% (v/v) water.  相似文献   

6.
石山 《高分子科学》2014,32(5):524-530
Poly(methyl methacrylate)/poly(N-isopropylacrylamide) (PMMA/PNIPAM) core-shell particles were synthesized by seeded precipitation polymerization of N-isopropylacrylamide (NIPAM) in the presence of PMMA seed particles. The anionic potassium persulfate was used as initiator, and acrylic acid as functional comonomer. It was shown that the weight ratio of the PNIPAM shell to the PMMA core can be greatly increased through continuous addition of NIPAM monomer at a relatively slow rate. PMMA/PNIPAM particles with different shell thickness were obtained by varying the amount of charged NIPAM monomers. These particles exhibited unique nonspherical core-shell morphology. PMMA core was partially coated by dense hair-like or antler-like PNIPAM shell depending on the shell thickness. The measurement of these particles' zeta potential at different temperatures showed that the absolute value of zeta potential unusually decreased as the particle size decreased with temperature.  相似文献   

7.
Summary Herein, we report that different core-shell particles could be successfully used as the carrier systems for the deposition of silver nanoparticles. Firstly, thermosensitive core-shell microgel particles have been used as the carrier system for the deposition of Ag nanoparticles, in which the core consists of poly (styrene) (PS) whereas the shell consists of poly (N-isopropylacrylamide) (PNIPA) network cross-linked by N, N′-methylenebisacrylamide (BIS). Immersed in water the shell of these particles is swollen. Heating the suspension above 32 °C leads to a volume transition within the shell, which is followed by a marked shrinking of the network of the shell. Secondly, “nano-tree” type polymer brush can be used as “nanoreactor” for the generation of silver nanoparticles also. This kind of carrier particles consists of a solid core of PS onto which bottlebrush chains synthesized by the macromonomer poly (ethylene glycol) methacrylate (PEGMA) are affixed by “grafting from” technique. Thirdly, silver nanoparticles can be in-situ immobilized onto polystyrene (PS) core-polyacrylic acid (PAA) polyelectrolyte brush particles by UV irradiation. Monodisperse Ag nanoparticles with diameter of 8.5 nm, 7.5 nm and 3 nm can be deposited into thermosensitive microgels, “nano-tree” type polymer brushes and polyelectrolyte brush particles, respectively. Moreover, obtained silver nano-composites show different catalytic activity for the catalytic reduction of p-nitrophenol depending on the carrier system used for preparation.  相似文献   

8.
We report on a comprehensive investigation of the flow behavior of colloidal thermosensitive core-shell particles at high densities. The particles consist of a solid core of poly(styrene) onto which a network of cross-linked poly(N-isopropylacrylamide) is affixed. Immersed in water the shell of these particles will swell if the temperature is low. Raising the temperature above 32 degrees C leads to a volume transition within this shell which leads to a marked shrinking of the shell. The particles have well-defined core-shell structure and a narrow size distribution. The remaining electrostatic interactions due to a small number of charges affixed to the core particles can be screened by adding 0.05M KCl to the suspensions. Below the lower critical solution temperature at 32 degrees C the particles are purely repulsive. Above this transition, a thermoreversible coagulation takes place. Lowering the temperature again leads to full dissociation of the aggregates formed by this process. The particles crystallize for effective volume fractions between 0.48 and 0.55. The crystallites can be molten by shear in order to reach a fluid sample again. The reduced shear stress measured in this metastable disordered state was found to be a unique function of the shear rate and the effective volume fraction. These reduced flow curves thus obtained can be described quantitatively by the theory of Fuchs and Cates [Phys. Rev. Lett. 89, 248304 (2002)] which is based on the mode-coupling theory of the glass transition.  相似文献   

9.
We present a new system that allows us to modulate the catalytic activity of metal nanoparticles (Ag) by a thermodynamic transition that takes place within the carrier system. Thermosensitive core-shell particles have been used as the carrier system in which the core consists of poly(styrene) (PS), whereas the shell consists of a poly(N-isopropylacrylamide) (PNIPA) network cross-linked by N,N'-methylenebisacrylamide (BIS). Immersed in water, the shell of these particles is swollen. Heating the suspension above 32 degrees C leads to a volume transition within the shell that is followed by a marked shrinking of the network of the shell. The maximum degree of swelling can be adjusted by the degree of cross-linking. Silver nanoparticles with diameters ranging from 6.5 to 8.5 nm have been embedded into thermosensitive PNIPA networks with different cross-linking densities. The Ag nanoparticles do not influence the swelling and the shrinking of the network in the shell. The surface plasmon absorption band of the nanoparticles is shifted to higher wavelengths with temperature. This is traced back to the varying distance of the nanoparticles caused by the swelling and the shrinking of the shell. The catalytic activity is investigated by monitoring photometrically the reduction of 4-nitrophenol by an excess of NaBH4 in the presence of the silver nanocomposite particles. The rate constant kapp was found to be strictly proportional to the total surface of the nanoparticles in the system. Moreover, kapp is first decreasing with increasing temperature when approaching the volume transition. This is due to the strong shrinking of the network. Only at temperatures above the volume transition is the normal Arrhenius-type dependence of kapp found again. In this way, catalytic activity of the metal nanoparticles enclosed in a "nanoreactor" can be modulated by volume transition over a wide range.  相似文献   

10.
We prepared anionic multistimuli responsive core-shell polymer nanoparticles with very low size dispersity. By using either acrylic acid (AA) or methacrylic acid (MA) as a comonomer in the poly(N-isopropyl acrylamide) (PNIPAM) shell, we are able to change the distribution of negative charges in the nanoparticle shell. The particle size, volume phase transition temperature, and aggregation state can be modulated using temperature, pH, or ionic strength, providing a very versatile platform for applications in sensors, medical diagnostics, environmental remediation, etc. The nanoparticles have a glassy poly(methyl methacrylate) (PMMA) core of ca. 40 nm radius and a cross-linked PNIPAM anionic shell with either AA or MA comonomers. The particles, p(N-AA) and p(MA-N), respectively, have the same total charge but different charge distributions. While the p(MA-N) particles have the negative charges preferentially distributed toward the inner shell, in the case of the p(N-AA) particles the charge extends more to the particle outer shell. The volume phase transition temperature (T(VPT)) of the particles is affected by the charge distribution and can be fine-tuned by controlling the electrostatic repulsion on the particle shell (using pH and ionic strength). By suppressing the particle charge we can also induce temperature-driven particle aggregation.  相似文献   

11.
核壳结构葡萄糖敏感微凝胶的制备   总被引:1,自引:0,他引:1  
用先合成聚N-异丙基丙烯酰胺(PNIPAM)微凝胶核再包一层N-异丙基丙烯酰胺/丙烯酸共聚物(P(NIPAM-co-AA))壳的办法合成了一系列核壳结构微凝胶.微凝胶壳层厚度随投入的壳储备溶液的增加而增加.研究了pH=3.5时核壳微凝胶的温敏体积相转变行为.由于PNIPAM核和P(NIPAM-co-AA)壳的相转变温度很接近,因此只观察到一个相转变.在EDC催化下使3-氨基苯硼酸与壳层中的羧基反应,将苯硼酸基(PBA)引入微凝胶,得到核为PNIPAM、壳为P(NIPAM-co-AMPBA)的核壳结构微凝胶.改性后的微凝胶表现出3个体积相转变过程.其中第一个对应于P(NIPAM-co-AMPBA)壳层的体积相转变.第二和第三个则是PNIPAM核的相转变过程.由于在沉淀聚合时交联剂BIS反应性更大,PNIPAM核结构不均一,形成BIS含量高的"核"和BIS含量低的"壳".BIS含量低的"壳"被一层疏水的P(NIPAM-co-AMPBA)壳包裹,拉大了其与"核"的相转变温度的差别,因此随着温度升高表现出两个相转变过程.PBA改性的微凝胶同样表现出葡萄糖敏感性,但在葡萄糖存在下溶胀度的改变较小.  相似文献   

12.
结合大分子自组装和原位自由基聚合方法,采用油溶性引发剂偶氮二异丁腈(AIBN),在聚(ε-已内酯)(PCL)纳米粒子表面引发聚合单体N-异丙基丙烯酰胺(NIPAM)和交联剂亚甲基双(丙烯酰胺)(MBA),制备得到了核-壳结构的PCL/PNIPAM聚合物纳米微球.系统研究了单体和交联剂用量、壳层目标交联度、初始PCL/DMF溶液的浓度及引发剂AIBN含量4个反应参数对核-壳结构PCL/PNIPAM纳米微球的PNIPAM壳层得率、微球尺寸、温敏性能及电镜形貌的影响.结果表明,在制备核-壳结构PCL/PNIPAM纳米微球的反应过程中,PCL粒子表面的聚合和水中的聚合二者之间相互竞争.适当增加引发剂AIBN的添加量,有利于制备得到核/壳比例可控的PCL/PNIPAM纳米微球;交联剂MBA较高的反应活性导致形成了非均匀交联的PNIPAM壳层.  相似文献   

13.
We investigated the phase behavior and the microscopic structure of the colloidal complexes constituted from neutral/polyelectrolyte diblock copolymers and oppositely charged surfactant by dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The neutral block is poly(N-isopropylacrylamide) (PNIPAM), and the polyelectrolyte block is negatively charged poly(acrylic acid) (PAA). In aqueous solution with neutral pH, PAA behaves as a weak polyelectrolyte, whereas PNIPAM is neutral and in good-solvent condition at ambient temperature, but in poor-solvent condition above approximately 32 degrees C. This block copolymer, PNIPAM-b-PAA with a narrow polydispersity, is studied in aqueous solution with an anionic surfactant, dodecyltrimethylammonium bromide (DTAB). For a low surfactant-to-polymer charge ratio Z lower than the critical value ZC, the colloidal complexes are single DTAB micelles dressed by a few PNIPAM-b-PAA. Above ZC, the colloidal complexes form a core-shell microstructure. The core of the complex consists of densely packed DTA+ micelles, most likely connected between them by PAA blocks. The intermicellar distance of the DTA+ micelles is approximately 39 A, which is independent of the charge ratio Z as well as the temperature. The corona of the complex is constituted from the thermosensitive PNIPAM. At lower temperature the macroscopic phase separation is hindered by the swollen PNIPAM chains. Above the critical temperature TC, the PNIPAM corona collapses leading to hydrophobic aggregates of the colloidal complexes.  相似文献   

14.
In the present study, we report a method for preparing a fluorescent thermosensitive hybrid material based on monodisperse, thermosensitive poly( N-isopropyl acrylamide) (PNIPAM) microgels covered with CdTe nanocrystals of 3.2 nm diameter. The CdTe nanocrystals were covalently immobilized on the surface of PNIPAM microgels. The chemical environment around the CdTe nanocrystals was modified by changing the temperature and inducing the microgel volume-phase transition. This change provoked a steep variation in the nanocrystal photoluminescence (PL) intensity in such a way that when the temperature was under the low critical solution temperature (LCST) of the polymer (36 degrees C) the PL of the nanocrystals was strongly quenched, whereas above the LCST the PL intensity was restored.  相似文献   

15.
ATRP技术用于热敏性高聚物在硅胶表面的接枝   总被引:2,自引:0,他引:2  
在超细硅胶表面引入原子转移自由基聚合(ATRP)的引发基团,通过ATRP技术使N-异丙基丙烯酰胺(NIPAM)在硅胶表面接枝聚合,合成得到了具有温敏性的核-壳复合微粒.通过FTIR,TG,EA,SEM,DSC等分析方法对接枝前后的复合粒子进行了分析与表征,结果证明聚N-异丙基丙烯酰胺(PNIPAM)接在了硅胶表面.TG分析得出PNIPAM在硅胶表面的接枝率达到25.2%;DSC分析表明复合硅胶具有温度敏感性,在34.1℃时发生相转变行为;GPC分析得出从复合硅胶表面"劈下"的聚合物PNIPAM的数均分子量约为8000,分子量分布为1.06.复合微粒表面均匀平坦,显示出活性聚合的优越性.  相似文献   

16.
An investigation of the volume transition in thermosensitive core–shell particles by dynamic light scattering (DLS) is presented. The core of the particles consists of polystyrene (diameter 118 nm), whereas the thermosensitive shell is composed of a network of poly (N-isopropylacrylamide) containing 2 mol% acrylic acid counits. The hydrodynamic radius of these particles as determined by DLS decreases in a continuous manner when raising the temperature. It is shown that the volume transition in the core–shell microgels remains continuous for a wide range of ionic strengths and pH values. This behavior is opposite to that of macrogels of the same chemical composition, which undergo a discontinuous volume transition. The present investigation therefore demonstrates that affixing the network to solid colloidal particles profoundly alters the volume transition of thermosensitive networks. The reason is that shrinking can take place only along the radial direction of the particles. The solid core thus exerts a strong spatial constraint onto the network, which leads to the observed behavior. Received: 29 March 1999 Accepted in revised form: 16 July 1999  相似文献   

17.
We have synthesized doubly thermosensitive core-shell microspheres composed of chemically cross-linked poly(N-n-propyl acrylamide-co-styrene) (P(nPA-co-S)) with different styrene contents as the core and linear poly(N,N-diethyl acrylamide) (PDEA), poly(N-isopropyl acrylamide) (PiPA), or poly(N-isopropyl methacrylamide) (PiPMA) as the shells. The morphologies and swelling properties of the core and the core-shell microspheres have been studied. The P(nPA-co-S) copolymers have a similar volume phase transition temperature regardless of the styrene content, indicating a two-layer structure in the microspheres with a PS-rich inner core and a PnPA-rich outer layer resulting from soap-free emulsion polymerization in water. Upon the addition of the second shell composed of linear thermosensitive polymers, the core-shell microspheres display a two-step shrinking behavior when heated. The P(nPA-co-S) core exhibits a volume phase transition temperature at 13-15 degrees C, while the shells of PDEA, PiPA, and PiPMA have volume phase transition temperatures at 28, 32, and 42 degrees C, respectively. The core-shell microspheres are composed of three layers and possess two volume phase transition temperatures.  相似文献   

18.
Thermosensitive PNIPAM microcontainers were prepared by using silica particles as template. Silica particles were prepared by the St?ber method and surface modified with linear P(NIPAM-co-MPS) chains. PNIPAM shell was then fabricated on the P(NIPAM-co-MPS)-modified silica particles through precipitation polymerization of NIPAM and MBA. Finally, PNIPAM microcontainers were obtained by removing the silica cores with NaOH. The materials were characterized by TEM, FTIR, GPC, and DLS. The PNIPAM microcontainers exhibit good thermosensitivity. The method to fabricate thermosensitive PNIPAM shell can be generalized to a versatile method for preparing PNIPAM shell on particles with silica surface, which includes surface modification with P(NIPAM-co-MPS) and precipitation polymerization of NIPAM and MBA using the modified particles as seed. Through this method, PNIPAM shell was successfully fabricated on iron oxide/silica nanostructures with a wormlike shape and relatively large size, which demonstrates the versatility of the method.  相似文献   

19.
We demonstrate an extension of a UV-Vis spectroscopy method to determine the phase boundaries for thermosensitive colloids as an alternative to the time-consuming sedimentation method. The Bragg attenuation peak from colloidal crystallites was monitored during the quasi-equilibrium colloidal crystal melting. The melting and freezing boundaries of the coexistence region were determined via a blue shift of Bragg's peak and the disappearance of peak area. We confirm this method using poly(N-isopropylacrylamide) (PNIPAM) particles at different charge densities and temperatures far below the lower critical solution temperature. At low pH, the particles behave as thermosensitive hard spheres.  相似文献   

20.
You YZ  Zhou QH  Manickam DS  Wan L  Mao GZ  Oupický D 《Macromolecules》2007,40(24):8617-8624
We report synthesis of temperature- and redox-responsive multiblock copolymers by reversible addition-fragmentation chain transfer (RAFT) polymerization. Well-defined α,ω-bis(dithioester)-functionalized poly(N-isopropylacrylamide) (PNIPAM) and poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) were prepared using 1,4-bis(thiobenzoylthiomethyl)benzene and 1,4-bis(2-(thiobenzoylthio)prop-2-yl)benzene as RAFT agents, respectively. Dually responsive multiblock copolymers were synthesized in a single aminolysis/oxidation step from the α,ω-bis(dithioester)-terminated PNIPAM and PDMAEMA. The copolymers and their stimulus-responsive behavior were characterized by size exclusion chromatography, NMR, light scattering and atomic force microscopy. Due to the presence of redox-sensitive disulfide bonds between the blocks, the copolymers were readily reduced to the starting polymer blocks. The presence of temperature-responsive PNIPAM blocks provided the copolymers with the ability to assemble into core-shell nanostructures with hydrophobic PNIPAM as a core and cationic PDMAEMA as stabilizing shell when above the phase transition temperatures of PNIPAM. The temperature-induced assembly of the copolymers also showed substantial pH sensitivity. The phase transition temperature increased with decreasing pH, while molecular weight of the assemblies decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号