首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The synthetic scope of the allyl-palladium chemistry can be extended to involve electrophilic reagents. The greatest challenge in these reactions is the catalytic generation of an allyl-palladium intermediate incorporating a nucleophilic allyl moiety. A vast majority of the published reactions that involve palladium-catalyzed allylation of electrophiles proceed via bis(allyl)palladium intermediates. The eta(1)-moiety of the bis(allyl)palladium intermediates reacts with electrophiles, including aldehydes, imines, or Michael acceptors. Recently, catalytic electrophilic allylations via mono-allylpalladium complexes were also presented by employment of so-called "pincer complex" catalysts.  相似文献   

2.
Jing Wang  Yan-Bo Yu  Xingang Zhang 《Tetrahedron》2018,74(44):6329-6334
A palladium catalyzed cross-coupling of fluorinated benzothiadiazoles (FBTs) with allyl chlorides is reported. The significant feature of this method is synthetic simplicity, providing a straightforward access to unsymmetrical and symmetrical alkylated FBT derivatives that are of interest in organic electronic and optoelectronic materials.  相似文献   

3.
Wallner OA  Szabó KJ 《Organic letters》2004,6(11):1829-1831
Palladium pincer complex (1)-catalyzed stannylation of allyl chloride, phosphonate, and epoxide substrates (4a-h) could be performed with hexaalkylditin reagents (3) under mild neutral reaction conditions. This catalytic reaction proceeds via palladium(II) intermediates without involvement of allyl-palladium complexes, and therefore the allylstannane product does not interfere with the palladium catalyst. Use of a combined catalytic system (1 + 2) allowed the development of an effective one-pot procedure for allylation of aldehyde and imine electrophiles. [reaction: see text]  相似文献   

4.
Kuwano R  Uchida K  Ito Y 《Organic letters》2003,5(12):2177-2179
[reaction: see text] The chiral palladium complex generated in situ from [Pd(eta(3)-allyl)Cl](2) and (R)-BINAP is a good catalyst for the catalytic asymmetric allylation of 1,3-diketones. The reaction provided chiral 2,2-dialkyl-1,3-diketones with 64-89% ee in high yields (13 examples). Enantiomeric excesses are strongly affected by the gamma-substituent of the allylic substrates. A variety of unsymmetrical 1,3-diketones were alkylated with cinnamyl acetate in good enantioselectivities via use of the BINAP-palladium catalyst (77-89% ee).  相似文献   

5.
Palladium-catalyzed electrophilic allylic substitution of functionalized allyl chlorides and allyl acetates can be achieved in the presence of hexamethylditin under mild and neutral reaction conditions. This efficient one-pot procedure involves palladium-catalyzed formation of transient allylstannanes followed by generation of a bis-allylpalladium intermediate, which subsequently reacts with electrophiles. Using this catalytic transformation, various aldehydes and imines can be allylated providing highly functionalized homoallyl alcohols and amines. Furthermore, tandem bis-allylation reactions could be performed by employing tosyl isocyanate and benzylidenemalonitrile as substrates. A particularly interesting mechanistic feature of this reaction is that palladium catalyzes up to three different transformations in each catalytic cycle. Various allylic functionalities, including COOEt, CONH(2), COCH(3), CN, Ph, and CH(3), are tolerated in the catalytic reactions due to the application of neutral and mild reaction conditions. The substitution reaction occurs with very high regioselectivity at the branched allylic terminus. Moreover, in several reactions, a high stereoselectivity was observed indicating that this new catalytic process has a high potential for stereoselective synthesis. The regioselectivity of the reaction can be explained on the basis of DFT calculations. These studies indicate that the allylic substituent prefers the gamma-position of the eta(1)-allyl moiety of the reaction intermediate.  相似文献   

6.
[reaction: see text]. Palladium-catalyzed electrophilic allylic substitution of functionalized allyl chlorides and allyl acetates can be achieved in the presence of hexamethylditin under mild reaction conditions. The substitution reaction occurs with very high regioselectivity at the branched allylic terminus. Regioselective tandem bisallylation reaction could be performed by employing benzylidenemalonitrile as substrate. The reaction mechanism can be explained by involvement of a bisallylpalladium intermediate. A particularly interesting mechanistic feature of this reaction is that palladium catalyzes up to three different transformations in the same catalytic cycle. DFT calculations indicate that the regioselectivity is determined by the location of the allylic substituent in the eta1-allyl moiety of the reaction intermediate.  相似文献   

7.
[reaction: see text] An efficient one-pot procedure was developed for palladium-catalyzed electrophilic substitution of allyl acetates (2a-h) in the presence of bis(pinacolato)diboron (1). These reactions proceed with an excellent regioselectivity and with a remarkably high stereoselectivity. The catalytic transformations take place via palladium-catalyzed formation of allyl boronates, which subsequently react with aldehyde (3) and sulfon-imine (4) electrophiles to afford homoallylic alcohols (5a-h) and amines (6a-d), respectively. A particularly interesting mechanistic feature is that the allylic substitution of the transient allyl boronate with sulfon-imine requires palladium catalysis. This finding indicates that the formation of the homoallylic amine derivatives (6a-d) involves bis-allylpalladium intermediates.  相似文献   

8.
Allylations of aryl halides take place upon treatment of tertiary homoallyl alcohols with aryl halides in the presence of cesium carbonate and a palladium catalyst. The allylation reaction would consist of the following steps: (1) oxidative addition of aryl halide to palladium, (2) ligand exchange between the halide and the homoallyl alcohol affording aryl(homoallyloxy)palladium, (3) retro-allylation of the palladium alkoxide to generate sigma-allyl(aryl)palladium with concomitant liberation of the relevant ketone, and (4) productive reductive elimination. Since the retro-allylation step proceeds in a concerted fashion via a conformationally regulated six-membered cyclic transition state, the allylation reactions are highly regio- and stereospecific when homoallyl alcohols having a substituted allyl group are used. Whereas triarylphosphine is known to serve as a ligand for the palladium-catalyzed allyl transfer reactions, tricyclohexylphosphine proves to significantly expand the scopes of aryl halides to electron-rich aryl chlorides and of homoallyl alcohols to cyclic homoallyl alcohols. The new arylative ring-opening reactions of cyclic homoallyl alcohols allow for the synthesis of ketones having a branched or linear allylarene moiety at the remote terminus in regio- and stereospecific manners.  相似文献   

9.
The use of second-generation [(NHC)Pd(R-allyl)Cl] complexes for Suzuki-Miyaura and Buchwald-Hartwig cross-coupling reactions involving heteroaromatic halides at room temperature is reported. The first examples of room temperature Suzuki-Miyaura cross-coupling of deactivated aryl chlorides with alkenyl boronic acids are also disclosed. Terminal substitution at the allyl moiety of the palladium complex facilitates its activation at room temperature leading to very active catalytic species enabling the present catalytic transformations to be performed rapidly using very mild reaction conditions. Catalyst loadings can be as low as 10 ppm for the Buchwald-Hartwig aryl amination and 50 ppm for the Suzuki-Miyaura reaction.  相似文献   

10.
Indole-3-carboxaldehydes undergo indium-mediated ternary reactions with allyl bromide and indoles to provide symmetrical and unsymmetrical bisindolyl alkanes and with other heterocyclic enamines viz. pyrrole, pyrazole, 6-aminouracil and imidazole to provide indolyl-heterocyclic alkanes in excellent yields. The reactions with substituted allyl bromides proceed with greater ease.  相似文献   

11.
Zhao X  Yu Z  Yan S  Wu S  Liu R  He W  Wang L 《The Journal of organic chemistry》2005,70(18):7338-7341
[equation: see text] An efficient one-pot route to unsymmetrical diorganyl selenides has been developed by ruthenium(III) chloride catalyzed reactions of dibenzyl or diphenyl diselenides with alkyl halides in the presence of zinc. Organic iodides, bromides, and activated chlorides underwent the reactions efficiently. Unreactive organic chlorides also underwent the same type of selenation with sodium bromide as the additive.  相似文献   

12.
赵红  蔡明中 《中国化学》2006,24(11):1669-1673
Dicyano-functionalized MCM-41-supported palladium complex was prepared from dicyano-functionalized MCM-41 and palladium chloride. This complex exhibited high catalytic activity in the allylation of aldehydes and ketones with allylic chlorides in the presence of SnCl2. This polymeric palladium complex can be recovered and reused without noticeable loss of activity.  相似文献   

13.
Nucleophilic substitution of ferrocenyl alcohols with various aliphatic alcohols in the presence of a catalytic amount of ytterbium triflate [Yb(OTf)3] was studied. It was found the unsymmetrical ferrocenyl ethers could be easily obtained in excellent yields when the reactions were performed in primary and secondary alcohols. However, in other organic non‐alcoholic solvents such as acetonitrile, the formation of symmetrical ferrocenyl ethers rather than unsymmetrical ones was observed.  相似文献   

14.
Direct preparation of 2-pyridylzinc bromide has been developed. Interestingly, the subsequent coupling reactions with acid chlorides have been carried out without any transition metal catalyst. 2-Pyridylaryl compounds, symmetrical and unsymmetrical 2,2′-bipyridines were also successfully obtained from palladium-catalyzed coupling reactions of 2-pyridylzinc bromide under mild conditions.  相似文献   

15.
New easily accessible 1,1'-bi-2-naphthol- (BINOL-) and biphenanthrol-based chiral pincer complex catalysts were prepared for selective (up to 85% enantiomeric excess) allylation of sulfonimines. The chiral pincer complexes were prepared by a flexible modular approach allowing an efficient tuning of the selectivity of the catalysts. By employment of the different enantiomeric forms of the catalysts, both enantiomers of the homoallylic amines could be selectively obtained. Both allyl stannanes and allyl trifluoroborates can be employed as allyl sources in the reactions. The biphenanthrol-based complexes gave higher selectivity than the substituted BINOL-based analogues, probably because of the well-shaped chiral pocket generated by employment of the biphenanthrol complexes. The enantioselective allylation of sulfonimines presented in this study has important implications for the mechanism given for the pincer complex-catalyzed allylation reactions, confirming that this process takes place without involvement of palladium(0) species.  相似文献   

16.
A continued study of the recently discovered diazotizative allylation (DiazAll) reaction of aniline derivatives is reported. Several allyl reagents, commonly used in radical allylation reactions, were evaluated, and some of these reagents resulted in allylation when used in the DiazAll reaction. The best result was obtained with allyl bromide. Substituted allylic bromides gave the corresponding allyl aromatic compounds in poor to excellent yields. In comparison with an established method for aromatic allylation, the DiazAll reaction performed well and was superior when a more complex allylic bromide was used. Finally, a new allylation-bromocyclization reaction was demonstrated and used in the synthesis of a known inhibitor of phenylethanolamine N-methyltransferase (PNMT), an enzyme involved in the biosynthesis of adrenaline.  相似文献   

17.
An additive‐free nickel‐catalyzed α‐allylation of aldehydes with allyl alcohol is reported. The reaction is promoted by 1 mol % of in situ formed nickel complex in methanol, and water is the sole by‐product of the reaction. The experimental conditions allow the conversion of various α‐branched aldehydes and α,β‐unsaturated aldehydes as nucleophiles. The same catalyst and reaction conditions enabled a tandem aldol condensation of aldehyde/α‐allylation reaction.  相似文献   

18.
We report a catalyst for intermolecular hydroamination of vinylarenes that is substantially more active for this process than catalysts published previously. With this more reactive catalyst, we demonstrate that additions of amines to vinylarenes and dienes occur in the presence of potentially reactive functional groups, such as ketones with enolizable hydrogens, free alcohols, free carboxylic acids, free amides, nitriles, and esters. The catalyst for these reactions is generated from [Pd(eta(3)-allyl)Cl](2) (with or without added AgOTf) or [Pd(CH(3)CN)(4)](BF(4))(2) and Xantphos (9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene), which generates complexes with large P-Pd-P bite angles. Studies on the rate of the C-N bond-forming step that occurs by attack of amine on an eta(3)-phenethyl and an eta(3)-allyl complex were conducted to determine the effect of the bite angle on the rate of this nucleophilic attack. Studies on model eta(3)-benzyl complexes containing various bisphosphines showed that the nucleophilic attack was faster for complexes containing larger P-Pd-P bite angles. Studies of substituted unsymmetrical and unsubstituted symmetrical model eta(3)-allyl complexes showed that nucleophilic attack on complexes ligated by Xantphos was faster than on complexes bearing ligands with smaller bite angles and that nucleophilic attack on unsymmetrical allyl complexes with larger bite angle ligands was faster than on unsymmetrical allyl complexes with smaller bite angle ligands. However, monitoring of catalytic reactions of dienes by (31)P NMR spectroscopy showed that the concentration of active catalyst was the major factor that controlled rates for reactions of symmetrical dienes catalyzed by complexes of phosphines with smaller bite angles. The identity of the counterion also affected the rate of attack: reactions of allylpalladium complexes with chloride counterion occurred faster than reactions of allylpalladium complexes with triflate or tetrafluoroborate counterion. As is often observed, the dynamics of the allyl and benzyl complexes also depended on the identity of the counterion.  相似文献   

19.
The synthesis, characterization, crystal structure and catalyst activity of the bidentate phosphine complex [1,2‐bis(diphenylphosphino)ethane]palladium(II) bromide, [PdBr2(dppe)], are presented. Treatment of 1,2‐bis(diphenylphosphino)ethane with palladium(II) bromide under mild conditions resulted in the compound in high yield and purity. The characterization of the synthesized compound was performed using spectroscopic methods, such as Fourier transform infrared and NMR, CHN analysis and X‐ray crystallography. The structure of the compound was slightly distorted square planar. This compound was found to work as an efficient catalyst for both Stille and Suzuki cross‐coupling reactions of various aryl halides with triphenyltin chloride and/or phenylboronic acid. Also, the catalyst could be recovered and reused several times without significant loss of its catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
The kinetics of Pd-catalyzed Tsuji-Trost allylation employing simple phosphine ligands (L = Ar3P, etc.) are consistent with turnover-limiting nucleophilic attack of an electrophilic [L2Pd(allyl)]+ catalytic intermediate. Counter-intuitively, when L is made more electron donating, which renders [L2Pd(allyl)]+ less electrophilic (by up to an order of magnitude), higher rates of turnover are observed. In the presence of catalytic NaBAr'F, large rate differentials arise by attenuation of ion-pair return (via generation of [L2Pd(allyl)]+ [BAr'F]-) a process that also increases the asymmetric induction from 28 to 78% ee in an archetypal asymmetric allylation employing BINAP (L*) as ligand. There is substantial potential for analogous application of [M]n+([BAr'F]-)n cocatalysis in other transition metal catalyzed processes involving an ionic reactant or reagent and an ionogenic catalytic cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号