首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Formation constants (ML) of 1 : 1 19-crown-6 (19C6) complexes with mono- (M+) and bivalent metal ions (M2+) were determined in water at 25 °C by conductometry. The KML value of 19C6 for M+ and M2+ decreases in the order Rb+ K+ > Tl+ > Na+ = Ag+ > Li+ Cs+ and Pb2+ > Ba2+ > Sr2+ > Cd2+ > Ca2+, respectively. The selectivity for the neighboring alkali metal ions in the periodic table is lower for 19C6 than for 18-crown-6 (18C6) except for the case of Rb+ and Cs+. The same is true for the alkaline earth metal ions. Generally, the KML values of 19C6 with M2+ are greater than those with M+. For Na+ and the ions which are smaller in size than Na+ (Li+, Ca2+, Cd2+), the KML value is larger for 19C6 than for 18C6, but the contrary holds for all the other ions of larger sizes than Na+. The limiting ionic molar conductivity (°) of the 19C6–K+ complex in water at 25 °C was determined to be 43. Although 19C6 is larger than 18C6, the 19C6–K+ complex is much more mobile in water than the 18C6–K+ complex.  相似文献   

2.
Stepwise complex formation is observed between 2,3,5,6-tetrakis(2-pyridyl)pyrazine (TPPZ) and a series of metal ions (M(n+) = Sc3+, Y3+, Ho3+, Eu3+, Lu3+, Nd3+, Zn2+, Mg2+, Ca2+, Ba2+, Sr2+, Li+), where TPPZ forms a 2:1 complex [(TPPZ)2-M(n+)] and a 1:1 complex [TPPZ-M(n+)] with Mn+ at low and high concentrations of metal ions, respectively. The fluorescence intensity of TPPZ begins to increase at high concentrations of metal ions, when the 2:1 (TPPZ)2-M(n+) complex is converted to the fluorescent 1:1 TPPZ-M(n+) complex. This is regarded as an "OFF-OFF-ON" fluorescence sensor for metal ions depending on the stepwise complex formation between TPPZ and metal ions. The fluorescence quantum yields of the TPPZ-M(n+) complex vary depending on the metal valence state, in which the fluorescence quantum yields of the divalent metal complexes (TPPZ-M2+) are much larger than those of the trivalent metal complexes (TPPZ-M3+). On the other hand, the binding constants of (TPPZ)2-M(n+) (K1) and TPPZ-M(n+) (K2) vary depending on the Lewis acidity of metal ions (i.e., both K1 and K2 values increase with increasing Lewis acidity of metal ions). Sc3+, which acts as the strongest Lewis acid, forms the (TPPZ)2-Sc3+ and TPPZ-Sc3+ complexes stoichiometrically with TPPZ. In such a case, "OFF-OFF-ON" switching of electron transfer from cobalt(II) tetraphenylporphyrin (CoTPP) to O2 is observed in the presence of Sc3+ and TPPZ depending on the ratio of Sc3+ to TPPZ. Electron transfer from CoTPP to O2 occurs at Sc3+ concentrations above the 1:2 ratio ([Sc3+]/[TPPZ]0 > 0.5), when the (TPPZ)2-Sc3+ complex is converted to the TPPZ-Sc3+ complex and TPPZ-(Sc3+)2, which act as promoters of electron transfer (ON) by the strong binding of O2*- with Sc3+. In sharp contrast, no electron transfer occurs without metal ion (OFF) or in the presence at Sc3+ concentrations below the 1:2 ratio (OFF), when the (TPPZ)2-Sc3+ complex has no binding site available for O2*-.  相似文献   

3.
在乙醇体系中,以氯化铕与1,2邻苯二氧基二乙酸和二苯甲酰甲烷反应合成了三元配合物Eu-BDDA-DBM以及弱荧光离子La3+,Y3-,Yb3-和Nd3+掺杂的铕配合物.通过红外、紫外-可见、热重、荧光光谱对配合物进行了表征.红外光谱表明,单一配合物和掺杂配合物具有相似的配位结构.荧光光谱表明,La3+和Nd3+离子掺杂可以大幅度提高的铕配合物的荧光强度,其中La3+掺杂荧光强度增强最明显.  相似文献   

4.
Gholivand MB  Bamdad F  Ghasemi J 《Talanta》1998,46(5):875-884
Xylenol orange (XO) is one of the complexometric indicators, that can bind to metal cations at both their amino and acidic groups. In this study the protonation constants and distribution diagrams of XO were studied pH-metrically, and the corresponding six protonation constants were calculated. The complex formation between XO (L) and alkaline earth ions (M) was investigated and the formation constants of the resulting complexes ML, MHL, M(2)L and M(2)HL were determined. The stabilities of both ML and M(2)L complexes were found to vary in the order Mg(2+)> Ca(2+)> Sr(2+)> Ba(2+). Studying the complex formation between Al(3+) ion (M) and XO (L), it was observed that four complexed species with stoichiometries ML, ML(2), MHL and MH(2)L could be formed in solution. It was also found that the Al L(2) complex can act as a chelating agent for further complexation with two cations other than Al(3+) ion (i.e. Ba, L, Al, L, Ba, Mg, L, Al, L, Mg, and Mg, L, Al, L, Ba). The formation constants of the resulting mixed complexes were determined and their distribution diagrams were investigated.  相似文献   

5.
TTHA complexes with diamagnetic rare earth ions (La3+, Y3+ and Lu3+) were studied by 1H and 13C NMR spectroscopy. A symmetric structural model was suggested for La(TTHA) complex and an asymmetric model for Y(TTHA) and Lu(TTHA) complexes. The complex formation was dependent on the pH value of the solution. The interactions of La(TTHA) with the additional metal ions (La3+, Y3+ and Ca2+) were relatively weak, but relatively strong for that of Lu(TTHA) with the additional Lu3+.  相似文献   

6.
Electrospray ionization mass spectrometry (ESI-MS) was used to study the binding of selected group II and divalent transition-metal ions by cyclo(Pro-Gly)3 (CPG3), a model ion carrier peptide. Metal salts (CatXn) were combined with the peptide (M) at a molar ratio of 1:10 M/Cat in aqueous solvents containing 50% vol/vol acetonitrile or methanol and 1 or 10 mM ammonium acetate (NH4Ac). Species detected include [M+H]+, [M+Cat-H]+, [M2+Cat]2+, [M+Cat+Ac]+, and [M+Cat+X]+. The relative stabilities of complexes formed with different cations (Mg2+, Ca2+, Sr2+, Mn2+, Co2+, Ni2+, Cu2+, and Zn2+) were determined from the abundance of 1:1 and 2:1 M/Cat species relative to that of the unbound peptide. The largest metal ions (Ca2+, Sr2+, and Mn2+) formed the most stable complexes. Reducing the buffer concentration increased the overall extent of metal binding. Results show that the binding specificity of CPG3 depends upon the size of the metal ion and its propensity for electrostatic interaction with oxygen atoms. Product ion tandem mass spectrometry of [M+H]+ and [M+Cu-H]+ confirmed the cyclic structure of the peptide, although the initial site(s) of metal attachment could not be determined.  相似文献   

7.
Transition metal chelates of the title compounds have been prepared and characterized by elemental analyses, i.r., 1H-n.m.r., electronic spectra, thermogravimetric analysis, conductometric and magnetic measurements. Chelates of general formulae MLjX · nH2O for 1:1 (M:L), where X=OH– or Cl–, j=1 or 2, n=1– 4 and M=VO2+, Cr3+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+ ions or ML2 for 1:2 (M:L) Ni-(1a), ML2·2H2O where M=Co2+, Ni2+ and Cu2+ or M2LjX·nH2O for 2:1 (M:L) Cr3+, Fe2+, Ni2+ and Cu2+, L=Ligand, have been prepared. I.r. and 1H-n.m.r. spectra indicate that the aldehydic group in position six and the hydroxylic group in position seven are involved in chelation in the 1:1 and 1:2 (M:L) chelates, whereas for 2:1 (M:L) chelates with (1c), the interaction of the metal ion takes place through CHO, OH, CO2H and NN groups. Tetrahedral, octahedral and square planar geometries are proposed for the chelates based on their electronic spectra and magnetic moments.  相似文献   

8.
Schiff base namely 2-aminomethylthiophenyl-4-bromosalicylaldehyde (ATS)(4-bromo-2-(thiophen-2-yl-imino)methylphenol) and its metal complexes have been synthesized and characterized by elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, ESR and thermal analysis (TGA). The analytical data of the complexes show the formation of 1:2 [M:L] ratio of the formula [ML2], where M represents Ni(II), Zn(II) and Cu(II) ions, while L represents the deprotonated Schiff base. IR spectra show that ATS is coordinated to the metal ions in a bidentate manner through azomethine-N and phenolic-oxygen groups. The ligand and their metal chelates have been screened for their antimicrobial activities using the disc diffusion method against the selected bacteria. A cytotoxicity of the compounds against colon (HCT116) and larynx (HEP2) cancer cells have been studied. Protonation constants of (ATS) ligand and stability constants of its Cu2+, Co2+, Mn2+, Zn2+ and Ni2+ complexes were determined by potentiometric titration method in 50% (v/v) DMSO-water solution at ionic strength of 0.1 M NaNO3.  相似文献   

9.
The complexes of transition-metal ions (M2+, where M = Fe, Co, Ni, Cu, Zn, Cd, and Hg) with 2-acetylbenzimidazolethiosemicarbazone (L) are studied under electrospray ionization (ESI) conditions. The ESI mass spectra of Fe and Co complexes showed the complex ions corresponding to [M+2L-2H]+, and those of Ni and Zn complexes showed [M+2L-H]+ ions, wherein the metal/ligand ratio is 1:2 and the oxidation state of the central metal ion is +3 in the case of Fe and Co and +2 in the case of Ni and Zn. The Cd and Cu complexes showed preferentially 1:1 complex ions, i.e., [M+L-H]+ or [M+L+Cl]+, whereas Hg formed both 1:1 and 1:2 complex ions. During formation of the above complex ions one or two ligands are deprotonated after keto-enol tautomerism, depending on the nature and oxidation state of central metal ion. The structures and coordination numbers of the metal ions in the complex ions were studied by their collision-induced dissociation spectra and ion-molecule reactions with acetonitrile or propylamine in the collision cell. Based on these results it is concluded that Fe, Co, Ni and Zn form stable octahedral complexes, whereas tetrahedral or square planar complexes are formed preferentially for other metals. In addition, the Cu complex showed a [2L+2Cu-3H]+ ion with a Cu-Cu bond.  相似文献   

10.
利用前沿色谱法,通过Cu2+、Ni2+和Co2+与螯合配体IDA 键合的准确度(R2>0.98)与精密度(RSD <5%)实验,研究了前沿色谱法同时测定络合稳定常数KML与总键合位点数Λ0值的可行性.为了进一步证明前沿色谱法的普适性,以Cu2+、Ni2+和Co2+为代表,在3种键合缓冲体系(NaAc-HAc、Na-PB、Tris-HCl)中,考察了金属离子在3种氨羧类螯合配体(IDA、Asp、Glu)上络合稳定常数KML的变化规律.结果表明,螯合配体对金属离子键合强度遵循IDA>Asp>Glu;金属离子对螯合配体键合强度遵循Cu2+>Ni2+>Co2+;3种键合缓冲体系中,NaAc-HAc键合效果最好.按照M06/6-311++G (d, p) 方法对螯合配体与金属离子的结合能(ΔE)与吉布斯自由能(ΔG)进行相关的量子计算.根据ΔE 与ΔG 的大小,从理论上推测出螯合配体与金属离子的键合规律,此规律与上述实验结果基本相符.本研究为金属离子与螯合配体间键合参数的求取提供了有效的方法和手段,从而为今后提高IMAC柱的稳定性,解决固定金属亲和柱在应用过程中尤其是竞争洗脱过程中金属离子的流失问题奠定了良好的基础.  相似文献   

11.
The UV-vis absorption spectra and the formation kinetics of sitting-atop (SAT) complexes (M(H2tpp)2+) of 5,10,15,20-tetraphenylporphyrin (H2tpp) with a series of divalent metal ions (M2+ = Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+) in acetonitrile have been investigated. The structural characteristics of the SAT complexes for a series of M2+ ions are discussed on the basis of the UV-vis absorption spectra. The structure parameters around Cu2+ in the Cu(II)-SAT complex were determined by a fluorescent EXAFS method: the coordination number is 6 with three kinds of Cu-N interactions having bond lengths of 2.05, 1.98, and 2.32 A for pyrrolenine nitrogens of H2tpp, acetonitrile nitrogens at equatorial sites, and acetonitrile nitrogens at axial sites, respectively. The rate constants at 25 degrees C for the formation of the SAT complex in acetonitrile are as follows: kf/mol-1 kg s-1 = 3.4 x 10(2) for Mn2+, 0.18 for Co2+, 1.6 x 10(-3) for Ni2+, and 61 for Zn2+. The finding that the variation trends in the rate constants for a series of M2+ ions for the SAT complex formation and the solvent exchange reaction in various solvents are very similar indicates that the rate-determining step for the SAT complex formation is the interchange between the coordinating nitrogen of a bound acetonitrile and the pyrrolenine nitrogen of H2tpp. The fact that the values of kf are smaller by 4-6 orders of magnitude in comparison with those of the solvent exchange suggests that there is a large energetic loss due to the fast preequilibria prior to the rate-determining step, such as deformation of a porphyrin ring and outer-sphere encounter formation due to an electrostatic interaction between M2+ and the local negative charge on the pyrrolenine nitrogens. We observed the subsequent formation of the corresponding metalloporphyrins by deprotonation of the SAT complex and oxidation of the M2+ center, of which the dynamic behavior was significantly different for the different M2+ ions.  相似文献   

12.
Research on Chemical Intermediates - In this work, various transition and rare earth metal ions (M3+; M&nbsp;=&nbsp;Mn3+, Fe3+, La3+, and Pr3+) doped CeO2 solid solutions were prepared by a...  相似文献   

13.
研究了非抑制型阳离子交换色谱中色谱柱温度(25~50℃)对碱金属离子(Li+、Na+、K+、Rb+)和碱土金属离子(Mg2+、Ca2+、Sr2+)以及NH4+保留的影响。在Shim-pack IC-C1磺酸型阳离子交换柱上,以硝酸为流动相分离碱金属离子,以乙二胺或乙二胺-草酸(柠檬酸)为流动相分离碱土金属离子,随着色谱柱温度的升高,碱金属和碱土金属离子的保留时间均增长,其范特霍夫曲线具有良好的线性关系,斜率为负值,表明在此条件下碱金属和碱土金属离子的保留为吸热过程。在Shim-pack IC-SC1羧酸型阳离子交换柱上,以硫酸为流动相同时分离碱金属和碱土金属离子,随着色谱柱温度的升高,Mg2+、Ca2+的保留时间增长,而K+、Rb+的保留时间缩短,Li+、Na+、NH4+的保留时间基本不变。在此条件下,Mg2+、Ca2+、K+和Rb+的范特霍夫曲线具有良好的线性关系,其中Mg2+和Ca2+的曲线斜率为负值,K+和Rb+的曲线斜率为正值,表明Mg2+和Ca2+的保留表现为吸热过程,K+和Rb+的保留表现为放热过程。研究表明在不同固定相和流动相条件下,色谱柱温度对碱金属和碱土金属离子保留行为的影响不同。  相似文献   

14.
The tandem mass spectra of the divalent metal ion (Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Ni2+, Co2+ and Zn2+) adducts of acetylated 1,2-trans-glycosyl sulfides, sulfoxides and sulfones were examined using low energy collision-induced dissociation on a Quattro II quadrupole tandem mass spectrometer. Abundant doubly charged ions, such as [3M + Met]2+ and [2M + Met]2+, were observed with alkaline earth metal chlorides. The other ions observed were [M + MetCl]+, [M + MetOAc]+, [M + MetO2SPh]+ and [2M + MetCl]+. The deprotonated metal adducts [M + Met-H]+ were seen only in the sulfones. The divalent metal ion adducts showed characteristic fragmentation pathways for the glycosyl sulfides, sulfoxides and sulfones, depending on the site of metal attachment. The doubly charged metal ion adducts dissociate to two singly charged ions, [M + MetOAc]+ and [M - OAc]+, in the sulfides and sulfoxides. In the sulfones, the adducts dissociate to [M + MetO2SPh]+ and [M - O2SPh]+. In contrast to the alkaline earth metals, which attach to the acetoxy functions, the transition metals attach to the sulfide and sulfoxide functions. The metal chloride adducts display characteristic fragmentation for the sulfides, sulfoxides and sulfones. The glucosyl, mannosyl and galactosyl sulfides, sulfoxides and sulfones could be differentiated on the basis of the stereochemically controlled MS/MS fragmentations of the metal chloride adducts.  相似文献   

15.
The complexation reaction between some oximes including methyl-2-pyridylketone oxime (MPKO), phenyl-2-pyridylketone oxime (PPKO) and diacetyl monooxime (DMO) with some transition and heavy metal ions Co2+, Ni2+, Zn2+, Pb2+, Fe2+, Fe3+, Cr3+ and La3+ has been studied potentiometrically in aqueous solution at 25+/-0.1 degrees C and ionic strength (mu) of 0.1M supported by KCl. The overall stability constants logbeta's of respective species were obtained by computer refinement of pH-volume data using BEST program. The best model among the several proposed models was selected according to the lowest sigma(fit) value. The main species in binary systems are ML, ML2, MLH, MLH2, ML2H, ML2H2, MOHL, M(OH)2L, M(OH)L2 and M(OH)2L2 (L = MPKO or PPKO or DMO).  相似文献   

16.
Katsuta S  Tsuchiya F  Takeda Y 《Talanta》2000,51(4):637-644
The formation constants (K(ML)) in water of 1:1 complexes of benzo-18-crown-6 (B18C6) and 18-crown-6 (18C6) with Zn(2+) and Cd(2+), the sizes of which are much smaller than the ligand cavities, were determined at 25 degrees C by conductometry. Compared with Cd(2+), the crown ethers form more stable complexes with Zn(2+) although the size of Zn(2+) is less suited for the cavities. B18C6 forms a more stable complex with each metal ion than 18C6. Moreover, the extraction equilibria of these metal ions (M(2+)) with B18C6 (L) for the benzene/water system in the presence of picric acid (HA) were investigated at 25 degrees C. The association between L and HA in benzene was examined for evaluating the intrinsic extraction equilibria of M(2+) with B18C6. The extracted species were found to be MLA(2) and ML(2)A(2), and the overall extraction constants (K(ex,1) and K(ex,2), respectively) were obtained. The values of K(ex,1) for these metal ions are almost the same, but the K(ex,2) is larger for Zn(2+) than for Cd(2+). The extraction selectivity was interpreted quantitatively by the constituent equilibrium constants, i.e. K(ML), the ion-pair extraction constant of ML(2+) with A(-), and the adduct formation constant of MLA(2) with L in benzene.  相似文献   

17.
In the standard electrospray ionization mass spectra of many common, low molecular mass organic compounds dissolved in methanol, peaks corresponding to ions with formula [3M + Met](2+) (M = organic molecule, Met = bivalent metal cation) are observed, sometimes with significant abundances. The most common are ions containing Mg(2+), Ca(2+) and Fe(2+). Their presence can be easily rationalized on the basis of typical organic reaction work-up procedures. The formation of [3M + Met](2+) ions has been studied using N-FMOC-proline methyl ester as a model organic ligand and Mg(2+), Ca(2+), Sr(2+), Ba(2+), Fe(2+), Ni(2+), Mn(2+), Co(2+) and Zn(2+) chlorides or acetates as the sources of bivalent cation. It was found that all ions studied form [3M + Met](2+) complexes with N-FMOC-proline methyl ester, some of them at very low concentrations. Transition metal cations generally show higher complexation activity in comparison with alkaline earth metal cations. They are also more specific in the formation of [3M + Met](2+) complexes. In the case of alkaline earth metal cations [2M + Met](2+) and [4M + Met](2+) complex ions are also observed. It has been found that [3M + Met](2+) complex ions undergo specific fragmentation at relatively low energy, yielding fluorenylmethyl cation as a major product. [M + Na](+) ions are much more stable and their fragmentation is not as specific.  相似文献   

18.
A prediction of the formation constants (log K1) for complexes of metal ions with a single NH3 ligand in aqueous solution, using quantum mechanical calculations, is reported. DeltaG values at 298 K in the gas phase for eq 1 (DeltaG(DFT)) were calculated for 34 metal ions using density functional theory (DFT), with the expectation that these would correlate with the free energy of complex formation in aqueous solution (DeltaG(aq)). [M(H2O)6]n+(g) + NH(3)(g) = [M(H2O)5NH3]n+(g) + H2O(g) (eq 1). The DeltaG(aq) values include the effects of complex changes in solvation on complex formation, which are not included in eq 1. It was anticipated that such changes in solvation would be constant or vary systematically with changes in the log K(1) value for different metal ions; therefore, simple correlations between DeltaG(DFT) and DeltaG(aq) were sought. The bulk of the log K1(NH3) values used to calculate DeltaG(aq) were not experimental, but estimated previously (Hancock 1978, 1980) from a variety of empirical correlations. Separate linear correlations between DeltaG(DFT) and DeltaG(aq) for metal ions of different charges (M2+, M3+, and M4+) were found. In plots of DeltaG(DFT) versus DeltaG(aq), the slopes ranged from 2.201 for M2+ ions down to 1.076 for M4+ ions, with intercepts increasing from M2+ to M4+ ions. Two separate correlations occurred for the M3+ ions, which appeared to correspond to small metal ions with a coordination number (CN) of 6 and to large metal ions with a higher CN in the vicinity of 7-9. The good correlation coefficients (R) in the range of 0.97-0.99 for all these separate correlations suggest that the approach used here may be the basis for future predictions of aqueous phase chemistry that would otherwise be experimentally inaccessible. Thus, the log K1(NH3) value for the transuranic Lr3+, which has a half-life of 3.6 h in its most stable isotope, is predicted to be 1.46. These calculations should also lead to a greater insight into the factors governing complex formation in aqueous solution. All of the above DFT calculations involved corrections for scalar relativistic effects (RE). Au has been described (Koltsoyannis 1997) as a "relativistic element". The chief effect of RE for group 11 ions is to favor linear coordination geometry and greatly increase covalence in the M-L bond. The correlation for M+ ions (H+, Cu+, Ag+, Au+) involved the preferred linear coordination of the [M(H2O)2]+ complexes, so that the DFT calculations of DeltaG for the gas-phase reaction in eq 2 were carried out for M = H+, Cu+, Ag+, and Au+. [M(H2O)2]+(g) + NH3(g) = [M(H2O)NH3]+(g) + H2O(g) (eq 2). Additional DFT calculations for eq 2 were carried out omitting corrections for RE. These indicated, in the absence of RE, virtually no change in the log K1(NH3) value for H+, a small decrease for Cu+, and a larger decrease for Ag+. There would, however, be a very large decrease in the log K1(NH3) value for Au(I) from 9.8 (RE included) to 1.6 (RE omitted). These results suggest that much of "soft" acid behavior in aqueous solution in the hard and soft acid-base classification of Pearson may be the result of RE in the elements close to Au in the periodic table.  相似文献   

19.
基于N-(9-蒽甲基)-L-组氨酸的NOR荧光逻辑门   总被引:2,自引:0,他引:2  
宗国强  吕功煊 《物理化学学报》2008,24(10):1902-1906
合成了一个新的组氨酸衍生物, N-(9-蒽甲基)-L-组氨酸(1), 并对其进行了元素分析、电喷雾电离质谱(ESI-MS)、核磁共振氢谱(1H-NMR)和碳谱(13C-NMR)等波谱表征. 考查了pH值及15种不同金属离子对其荧光强度的影响. 实验结果表明, 中性水溶液条件下, Zn2+和Cd2+能使体系荧光增强, 而Pb2+、Co2+、Hg2+、Ni2+和Cu2+等则使体系荧光有不同程度的猝灭.其中, Cu2+和Ni2+猝灭能力最强, 它们与化合物1均形成了物质的量比为1:2的配合物, 络合常数分别为2.88×106和1.12×106 L2·mol-2. Cu2+和Ni2+对化合物1的荧光猝灭为静态猝灭过程. 在此基础上, 以Cu2+和Ni2+作为两个输入信号, 以蒽的特征荧光发射作为输出信号, 构建了一个NOR荧光分子逻辑门.  相似文献   

20.
Three DTPA-derivative ligands, the non-substituted DTPA-bis(amide) (L(0)), the mono-substituted DTPA-bis(n-butylamide) (L(1)) and the di-substituted DTPA-bis[bis(n-butylamide)] (L(2)) were synthesized. The stability constants of their Gd3+ complexes (GdL) have been determined by pH-potentiometry with the use of EDTA or DTPA as competing ligands. The endogenous Cu2+ and Zn2+ ions form ML, MHL and M(2)L species. For the complexes CuL(0) and CuL(1) the dissociation of the amide hydrogens (CuLH(-1)) has also been detected. The stability constants of complexes formed with Gd3+, Cu2+ and Zn2+ increase with an increase in the number of butyl substituents in the order ML(0) < ML(1) < ML(2). NMR studies of the diamagnetic YL(0) show the presence of four diastereomers formed by changing the chirality of the terminal nitrogens of their enantiomers. At 323 K, the enantiomerization process, involving the racemization of central nitrogen, falls into the fast exchange range. By the assignment and interpretation of 1H and 13C NMR spectra, the fractions of the diastereomers were found to be equal at pH = 5.8 for YL(0). The kinetic stabilities of GdL(0), GdL(1) and GdL(2) have been characterized by the rates of the exchange reactions occurring between the complexes and Eu3+, Cu2+ or Zn2+. The rates of reaction with Eu3+ are independent of the [Eu3+] and increase with increasing [H+], indicating the rate determining role of the proton assisted dissociation of complexes. The rates of reaction with Cu2+ and Zn2+ increase with rising metal ion concentration, which shows that the exchange can take place with direct attack of Cu2+ or Zn2+ on the complex, via the formation of a dinuclear intermediate. The rates of the proton, Cu2+ and Zn2+ assisted dissociation of Gd3+ complexes decrease with increasing number of the n-butyl substituents, which is presumably the result of steric hindrance hampering the formation or dissociation of the intermediates. The kinetic stabilities of GdL(0) and GdL(1) at pH = 7.4, [Cu2+] = 1 x 10(-6) M and [Zn(2+)] = 1 x 10(-5) M are similar to that of Gd(DTPA)2-, while the complex GdL2 possesses a much higher kinetic stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号