首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Here we show a mapping between waveguide theory and spin-chain transport, opening an alternative approach to solid-state quantum information transport. By applying temporally varying control profiles to a spin chain, we design a virtual waveguide or "spin guide" to conduct spin excitations along defined space-time trajectories of the chain. We show that the concepts of confinement, adiabatic bend loss, and beam splitting can be mapped from optical waveguide theory to spin guides, and hence to "spin splitters." Importantly, the spatial scale of applied control pulses is required to be large compared to the interspin spacing, thereby allowing the design of scalable control architectures.  相似文献   

2.
李玉现 《中国物理 B》2008,17(8):3058-3061
Using the tight-binding model approximation, this paper investigates theoretically spin-dependent quantum transport through an Aharonov-Bohm (AB) interferometer. An external magnetic field is applied to produce the spinpolarization and spin current. The AB interferometer, acting as a spin splitter, separates the opposite spin polarization current. By adjusting the energy and the direction of the magnetic field, large spin-polarized current can be obtained.  相似文献   

3.
We study a string of neutral atoms with nearest neighbor interaction in a 1D beam splitter configuration, where the longitudinal motion is controlled by a moving optical lattice potential. The dynamics of the atoms crossing the beam splitter maps to a 1D spin model with controllable time dependent parameters, which allows the creation of maximally entangled states of atoms by crossing a quantum phase transition. Furthermore, we show that this system realizes protected quantum memory, and we discuss the implementation of one- and two-qubit gates in this setup.  相似文献   

4.
We present an entanglement concentration protocol for electrons based on their spins and their charges. The combination of an electronic polarizing beam splitter and a charge detector functions as a parity check device for two electrons, with which the parties can reconstruct maximally entangled electron pairs from those in a less-entanglement state nonlocally. This protocol has a higher efficiency than those based on linear optics and it does not require the parties to know accurately the information about the less-entanglement state, which makes it more convenient in a practical application of solid quantum computation and communication.  相似文献   

5.
We established a large class of exactly soluble spin liquids and chiral spin liquids on three-dimensional helix lattices by introducing Kitaev-type's spin coupling. In the chiral spin liquids, exact stable ground states with spontaneous breaking of the time reversal symmetry are found. The fractionalized loop excitations in both the spin and chiral spin liquids obey non-Abelian statistics. We characterize this kind of statistics by non-Abelian Berry phase and quantum algebra relation. The topological correlation of loops is independent of local order parameter and it measures the intrinsic global quantum entanglement of degenerate ground states.  相似文献   

6.
Continuous quantum nondemolition monitoring of a collective atomic spin with an off-resonant laser beam has been performed. Squeezed atomic spin states have thereby been produced with spin noise reduction to 70% below the standard quantum limit expected for a coherent spin state.  相似文献   

7.
We propose the ambipolar carrier transport by surface acoustic waves (SAWs) in a semiconductor quantum well (QW) for the realization of the Stern-Gerlach (SG) experiment in the solid phase. The well-defined and very low carrier velocity in the moving SAW field leads to a large deflection angle and thus to efficient spin separation, even for the weak field gradients and short (μm-long) interaction lengths that can be produced by micromagnets. The feasibility of a SG spin filter is discussed for different QW materials.  相似文献   

8.
We consider the dynamics of a quantum coherence of two chosen spins in systems of dipolar coupled nuclear spins s=1/2 in solid. With the purpose to study this coherence we suggest two different methods. One of them uses the partial trace technique and reduced density matrix. The second method is based on the calculation the intensity of multiple quantum coherences using two-spin operator and the density matrix of the whole spin system. Results of calculations of the multiple-quantum dynamics in spin clusters of various dimensionalities are presented. It is shown that the whole density matrix method is more informative than the method based on the reduced density matrix.  相似文献   

9.
A weak continuous quantum measurement of an atomic spin ensemble can be implemented via Faraday rotation of an off-resonance probe beam, and may be used to create and probe nonclassical spin states and dynamics. We show that the probe light shift leads to nonlinearity in the spin dynamics and limits the useful Faraday measurement window. Removing the nonlinearity allows a nonperturbing measurement on the much longer time scale set by decoherence. The nonlinear spin Hamiltonian is of interest for studies of quantum chaos and real-time quantum state estimation.  相似文献   

10.
A beam splitter operator is a very important linear device in the field of quantum optics and quantum information. It can not only be used to prepare complete representations of quantum mechanics, entangled state representation, but it can also be used to simulate the dissipative environment of quantum systems. In this paper, by combining the transform relation of the beam splitter operator and the technique of integration within the product of the operator, we present the coherent state representation of the operator and the corresponding normal ordering form. Based on this, we consider the applications of the coherent state representation of the beam splitter operator, such as deriving some operator identities and entangled state representation preparation with continuous-discrete variables. Furthermore, we extend our investigation to two single and two-mode cascaded beam splitter operators, giving the corresponding coherent state representation and its normal ordering form. In addition, the application of a beam splitter to prepare entangled states in quantum teleportation is further investigated, and the fidelity is discussed. The above results provide good theoretical value in the fields of quantum optics and quantum information.  相似文献   

11.
Based on the dual-gated silicene, we have evaluated theoretically the spin-dependent transport in lateral resonant tunneling structure. By aligning the completely valley-polarized beam with spin-resolved well state in concerned structure, large spin polarization can be expected owing to spin-dependent resonant tunneling mechanism. Under the gate electric field modulation, the forming quantum well state can be externally manipulated, triggering further the emergence of externally-controllable spin polarization. Importantly, integrating the considered structure with a proper valley-filter, which might be constructed from valley-contrasting physics as that in graphene valleytronics, completely-polarized spin beam can also be attained without the assistance of ferromagnetic component, providing thus some profitable strategies to develop nonmagnetic spintronic devices residing on silicene.  相似文献   

12.
龙洋  任捷  江海涛  孙勇  陈鸿 《物理学报》2017,66(22):227803-227803
电子的量子自旋霍尔效应的发现推进了当今凝聚态物理学的发展,它是一种电子自旋依赖的具有量子行为的输运效应.近年来,大量的理论和实验研究表明,描述电磁波场运动规律的麦克斯韦方程组内禀了光的量子自旋霍尔效应,存在于界面的倏逝波表现出强烈的自旋与动量关联性.得益于新兴的光学材料:超构材料(metamaterials)的发展,不仅能够任意设定光学参数,同时也能引入很多复杂的自旋-轨道耦合机理,让我们能够更加清晰地了解和验证其中的物理机理.本文对超构材料中量子自旋霍尔效应做了简要的介绍,内容主要包括真空中光的量子自旋霍尔效应的物理本质、电单负和磁单负超构材料能带反转导致的不同拓扑相的界面态、拓扑电路系统中光量子自旋霍尔效应等.  相似文献   

13.
《Physics letters. A》2019,383(24):2903-2907
In degenerate quantum plasma the energy behavior of electrostatic modes propagating perpendicular to the external magnetic field is studied by employing the separated spin evolution quantum hydrodynamic (SSE-QHD) model. This model reveals that spin electron cyclotron wave (SECW) appears additionally with the upper hybrid wave (UHW). In case of SECW, the curves for the energy flow speed at different levels of spin polarization effect flip over at a particular value of wave number. The spin polarization effect enhances the energy flow speed before this value of wave number and then suppresses it afterward. The energy flow speed is enhanced by spin polarization effect in the entire range of wave number for the propagation of UHW. The Bohm potential effect drastically increases the energy flow speed at high wave number domain in both the waves. This study may find its applications to understand the energy behavior inspin polarized solid state plasmas  相似文献   

14.
We demonstrate how a beam splitter in combination with different light sources can be used as an optimal universal 1-->2 quantum cloner and as an optimal universal quantum NOT machine for the polarization qubit of a single photon. For the cloning a source of single photons with maximally mixed polarization is required and for the NOT operation a source of maximally entangled photon pairs. We demonstrate both operations with near optimal fidelity. Our scheme can be generalized in a natural way to clone and NOT the spin state of electrons.  相似文献   

15.
量子密钥分发是量子信息论中发展最快、最接近实用化的领域,偏振分束器是量子密钥分发系统中重要的组成部分,对分束器的经典分析和量子分析得出了完全一致的结果.  相似文献   

16.
一维量子多体系统是凝聚态物理学中的重要研究方向之一,其中的新奇量子物态则是重要的研究课题。本文我们首先简要回顾一维量子整数自旋链体系的相关研究背景,然后提出一类SO(n)对称的严格可解量子自旋链模型及其矩阵乘积基态。当奇数n≥3时,体系的基态为Haldane相。利用这类态中隐藏的稀薄反铁磁序,我们找到了刻画这类态的非局域弦序参量,并在隐藏拓扑对称性的统一框架下解释了稀薄反铁磁序以及边缘态等奇特现象的起源。当偶数n≥4时,体系的基态为二聚化态。这些态属于破缺平移对称性的非Haldane相,但同样具有隐藏的反铁磁序。通过这些严格解的研究,我们还得到了一维SO(n)对称的双线性–双二次模型的基态相图,并发现在n≥5时,一维SO(n)对称的反铁磁海森堡模型的基态处于二聚化相中。基于以上这些结果,我们推广构造了一维平移不变且包含李群G对称性的Valence BondState(VBS)态,并利用其矩阵乘积表示讨论了对应哈密顿量的构造方法。对于自旋为S的量子整数自旋链,我们研究了两类具有不同拓扑属性的VBS类,前一类VBS态的边缘态处于SU(2)自旋J的不可约表示,后一类VBS态的边缘态为SO(2S+1)旋量。在前一类态中,我们以自旋为1的费米型VBS态为例构造了对应的哈密顿量。对后一类态,我们证明了它们等价于SO(2S+1)矩阵乘积态,从而揭示了呈展对称性的起源和边缘态的性质。我们还推广了SO(5)对称的玻色型和费米型VBS态,并探讨了它们的拓扑刻画方式。  相似文献   

17.
Nuclear spin qubits have the longest coherence times in the solid state, but their quantum readout and initialization is a great challenge. We present a theory for the interaction of an electric current with the nuclear spins of donor impurities in semiconductors. The theory yields a sensitivity criterion for quantum detection of nuclear spin states using electrically detected magnetic resonance, as well as an all-electrical method for fast nuclear spin qubit initialization.  相似文献   

18.
We introduce a spin ladder with Ising interactions along the legs and intrinsically frustrated Heisenberg-like ferromagnetic interactions on the rungs. The model is solved exactly in the subspaces relevant for the ground state by mapping to the quantum Ising model, and we show that a first order quantum phase transition separates the classical from quantum regime, with the spin correlations on the rungs being either ferromagnetic or antiferromagnetic, and different spin excitations in both regimes. The present case resembles the quantum phase transition found in the compass model in one and two dimensions.  相似文献   

19.
We examine spin vortices in ferromagnetic quantum Heisenberg models with planar anisotropy on two-dimensional lattices. The symmetry properties and the time evolution of vortices built up from spin-coherent states are studied in detail. Although these states show a dispersion typical for wave packets, important features of classical vortices are conserved. Moreover, the results on symmetry properties provide a construction scheme for vortex-like excitations from exact eigenstates, which have a well-controlled time evolution. Our approach works for arbitrary spin length both on triangular and square lattices. Received 2 October 1998  相似文献   

20.
A tunable multi-function broadband splitter consisted of a silver film, Kerr medium and a silver grating sandwiched between linear dielectrics waveguides is proposed and numerically investigated. This splitter can realize the functions of the beam splitter, the polarization splitter and wavelength beam splitter. This surface plasmon based device provides a unique approach for polarization sensitive manipulation of light in an integrated circuit and will be essential for future classical and quantum information processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号