首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The magnetic properties of Co3O4 with a normal spinel structure were investigated via the full potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT). The exchange and correlation effects between electrons were treated with a standard generalized gradient approximation (GGA) from Perdew–Burke–Ernzerhof (PBE), as a function of the on-site Coulomb U term, the GGA−PBE+U method, and a B3PW91 hybrid functional with different Hartree–Fock exchange admixtures. Were calculated all of these exchange–correlation (XC) functionals both with and without spin–orbit coupling (SOC). The objective for these calculations was to predict the ground-state magnetic structure of Co3O4 crystal using different XC functionals and to investigate the influence that SOC had on these results. All of our calculations confirmed that the collinear antiferromagnetic (AFM) order was energetically more favorable than the ferromagnetic (FM) one, which agrees with experimental findings. This conclusion was not influenced by the XC functional type employed or whether the spin–orbit effect was used. Thus, the present work does not confirm the recent DFT plane wave pseudopotential results that when including spin–orbit effects, the calculations determined that the collinear FM state had lower energy than the AFM one.  相似文献   

2.
The Li-centered ‘ferric wheel’ molecules with six oxo-bridged iron atoms form molecular crystals. We probed their electronic structure by X-ray photoelectron and soft X-ray emission spectroscopy, having calculated in parallel the electronic structure of a single ‘ferric wheel’ molecule from first-principles by tools of the density-functional theory, using, specifically, the Siesta method. The Fe local moments were found to be 4μB, irrespective of their mutual orientation. Neighbouring atoms, primarily oxygen, exhibit a noticeable magnetic polarization, yielding effective spin S=5/2 per iron atom, that can get inverted as a ‘rigid’ one in magnetic transitions. Corresponding energy preferences can be mapped onto the Heisenberg model with effective exchange parameter J of about −80 K.  相似文献   

3.
The electronic structures of perovskite oxides La2/3Sr1/3MnO3 are studied with density functional methods. Our calculations indicated that the strong electron correlation, which has evident influence on the split of Mn 3d-orbitals and the forming of double exchange, is very important to get the correct densities of states (DOS) of La2/3Sr1/3MnO3. In addition, results show that 4.1 eV is a good choice for the on-site Coulomb parameter U.  相似文献   

4.
The structural, elastic, electronic, and thermodynamic properties of the cubic NaAlO3-perovskite are calculated using the full potential linearized augmented plane wave with local orbital (FP-LAPW)+lo. The exchange-correlation energy, is treated in generalized gradient approximation (GGA) using the Perdew–Burke–Ernzerhof (PBE) parameterization. The calculated equilibrium parameter is in good agreement with other works. The bulk modulus, elastic constants and their related parameters, such as Young modulus, shear modulus, and Poisson ratio were predicted. The electronic band structure of this compound has been calculated using the Angel-Vosko (EV) generalized gradient approximation (GGA) for the exchange correlation potential. We deduced that NaAlO3-perovskite exhibit a wide-gap which it is an indirect from R to Γ point. The analysis of the density of states (DOS) curves shows ionic and covalent character bond for Al–O and Na–O respectively.  相似文献   

5.
In this work, we report on the structural, electronic, and ferroelectric properties of SmMn2O5 by using first-principles density functional theory plus on-site Coulomb interaction (DFT + U) calculations. A thorough analysis was preformed to reveal the competing characteristics of different high-temperature (T) phases and the polarization mechanism in the low-T multiferroic phase. We show that the structural characteristics of the high-T phases have a strong influence on the low-T multiferroicity. In addition to the spin-induced lattice distortion that reduces substantially the purely electronic ferroelectricity, the dominant polarization mechanism in low-T SmMn2O5 still originates from the electronic polarization. By performing mode decomposition of the Hellmann–Feynman forces and the lattice distortion induced by the q = (0.5, 0, 0) magnetic order, we find that the Raman-active Ag mode characterized by the Mn4+O6 octahedron distortion and synergistic displacement of Mn3+ and Sm ions is of primary importance, while the infrared (IR)-active B2u mode plays a secondary role. These findings provide a theoretical foundation for future studies concerning the enhanced magnetoelectric effects of SmMn2O5 due to its pure exchange–striction mechanism.  相似文献   

6.
The electronic structure of phosphorus-contained sulfides InPS4, Tl3PS4, and Sn2P2S6 was investigated experimentally with X-ray spectroscopy and theoretically by quantum mechanical calculations. The partial densities of electron states calculated with the ab initio multiple scattering FEFF8 code correspond well to their experimental analogues—the X-ray K- and L2,3-spectra of sulfur and phosphorus. The good agreement between theory and experiment was also achieved for K-absorption spectra of S and P in the investigated sulfides. In spite of the difference in the crystallographic structure of InPS4, TI3PS4, and Sn2P2S6 that influence the form of K-absorption spectra, the electronic structure of their valence bands are rather similar. This is due to the strong interaction of the P and S atoms, which are the nearest neighbors in the compounds studied. The electron densities of p- and s-states of phosphorus are shifted by about 3 eV to lower energies in comparison to the analogous electron states of sulfur. This is connected with the greater electro-negativity of sulfur, and is confirmed by the calculated electron charge transfer from P to S.  相似文献   

7.
Ab initio Molecular Dynamics (MD) method, based on density functional theory (DFT) with planewaves and pseudopotentials, was used to study the stability and internal motion in silver cluster Agn, with n =4-6. Calculations on the neutral, cationic and anionic silver dimer Ag2 show that the bond distance and vibrational frequency calculated by DFT are of good quality. Simulations of Ag4, Ag5, and Ag6 in canonical ensemble reveal distinct characteristics and isomerization paths for each cluster. At a temperature of 800 K, an Ag4 has no definite structure due to internal motion, while for Ag5 and Ag6the clusters maintain the planar structure, with atomic rearrangement observed for Ag5 but not for Ag6. At a temperature of 200 K, Ag4 can exist in two planar structures whilst Ag5 is found to be stable only in the planar form. In contrast Ag6 is stable in both planar trigonal and 3D pentagonal structures. Micro-canonical MD simulation was performed for all three clusters to obtain the vibrational density of states (DOS). Received 5 May 1999 and Received in final form 20 August 1999  相似文献   

8.
Cohesive, electronic and magnetic properties of the intermetallic system Ni–In, specifically the stable phases Ni3In-hP8, Ni2In-hP6, NiIn-hP6 and Ni2In3-hP5, have been investigated. At present, these materials are of great interest in connection to the application of the In–Sn alloys as lead-free micro-soldering alloys, and considering Ni as the contact material. In spite of this, scarce literature regarding basic thermodynamic properties of the Ni–In intermetallic phases has been found. Full-Potential Linear Augmented Plane Wave method (FP-LAPW) within the framework of the Density Functional Theory (DFT) with exchange and correlation effects in the Generalized Gradient (GGA) and Local Density (LDA) approximations is used. All the calculations include spin polarization. Structural parameters, formation energies and cohesive properties of the different phases are studied through minimization of internal parameters. The electronic density of states (DOS) is analyzed for each optimized structure. We found that the NiIn-hP6 phase is the most stable one and only the Ni3In-hP8 phase exhibits magnetic properties.  相似文献   

9.
We suggest and implement a new Monte Carlo strategy for correlated models involving fermions strongly coupled to classical degrees of freedom, with accurate handling of quenched disorder as well. Current methods iteratively diagonalise the full Hamiltonian for a system of N sites with computation time τN ∼N4. This limits achievable sizes to N ∼100. In our method the energy cost of a Monte Carlo update is computed from the Hamiltonian of a cluster, of size Nc, constructed around the reference site, and embedded in the larger system. As MC steps sweep over the system, the cluster Hamiltonian also moves, being reconstructed at each site where an update is attempted. In this method τN,Nc ∼NNc3. Our results are obviously exact when Nc=N, and converge quickly to this asymptote with increasing Nc, particularly in the presence of disorder. We provide detailed benchmarks on the Holstein model and the double exchange model. The `locality' of the energy cost, as evidenced by our results, suggests that several important but inaccessible problems can now be handled with control. This method forms the basis of our studies in Europhys. Lett. 68, 564 (2004), Phys. Rev. Lett. 94, 136601 (2005), and Phys. Rev. Lett. 96, 016602 (2006).  相似文献   

10.
Compared to half-metallic ferromagnets, half-metallic antiferromagnets (precisely called half-metallic fully compensated ferrimagnets) are more promising candidates for spintronic applications since their zero magnetization leads to lower stray fields and thus tiny energy losses. Using the first-principles calculations, we have systematically investigated the electronic and magnetic properties of the ordered Cr1 − xCaxSb alloy. It is found that Cr1 − xCaxSb with x=0.125, 0.25, 0.5 and 0.75 all are half-metals like zinc-blende CrSb and CaSb. Interestingly, Cr0.25Ca0.75Sb is a half-metallic antiferromagnet with complete spin polarization, and the half-metallic antiferromagnetism is robust against the lattice compression and expansion and the choice of electronic exchange and correlation functional.  相似文献   

11.
We present structural and optical properties of silver clusters Agn (n=2, 4, 6, 8) at two model support sites of MgO, stoichiometric MgO(100) and FS-center defect, based on density functional theory and embedded cluster model. Our results provide the mechanism responsible for the absorption and emission patterns due to the specific interaction between the excitations within the cluster and the support site which is strongly cluster size and structure dependent. We propose Ag4 at stoichiometric site as well as Ag2, Ag4 and Ag6 at FS-center defects as good candidates for the emissive centers in the visible regime.  相似文献   

12.
The possibility of using magic Si7 clusters to form a cluster material was studied experimentally and theoretically. In experiments Si7 clusters were deposited on carbon surfaces, and the electronic structure and chemical properties of the deposited clusters were measured using X-ray photoelectron spectroscopy (XPS). A non bulk-like electronic structure of Si7 was found in the Si 2p core level spectra. Si7 is suggested to form a more stable structure than the non-magic Si8 cluster and Si atoms upon deposition on carbon surfaces. Theoretically it was possible to study the interaction between the clusters without the effect of a surface. Density functional theory (DFT) calculations of potential curves of two free Si7 clusters approaching each other in various orientations hint at the formation of cluster materials rather than the fusion of clusters forming bulk-like structures.  相似文献   

13.
First‐principles LDA + U calculations have been performed to study the effects of oxygen vacancies (VO) on the electronic structure and magnetism in undoped rutile TiO2–x . Instead of treated as an adjustive parameter, the value of U was determined by constrained‐density‐functional calculations. The calculated electronic structure reveals that the valence electrons released by VO would occupy mainly the neighboring Ti:3d orbital which then becomes spin‐polarized due to intra‐atomic exchange interaction, thereby giving rise to the half‐metallic ferromagnetism. The magnetization induced by VO in rutile TiO2–x is almost proportional to the VO concentration (x) for x > 0.0625, and becomes 0 for x ≤ 0.0417. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We report a systematic study of the structural, electronic and magnetic properties of Cr-doped CdTe for various Cr concentrations x (=0.25, 0.5, 0.75 and 1.0) using first principles calculations based on the density functional theory (DFT). The electronic band structure of the alloy has been calculated using the Wu-Cohen (WC) as well as the Angel-Vosko (EV) generalized gradient approximation (GGA) for the exchange-correlation potential. The analysis of the density of states (DOS) curves shows the half-metallic ferromagnetic character with half-metallic gap more than 0.52 eV. While the origin of half-metallic ferromagnetism is explained, the band structure calculations are used to determine s (p)-d exchange constants N0α (conduction band) and N0β (valence band) that agree with typical magneto-optical experiment. It is found that the p-d hybridization reduces the magnetic moment of Cr from its free space charge value and produces small magnetic moments on the Cd and Te sites. Lastly, we discuss the robustness of half-metallicity with respect to the variation of lattice constants of the CrxCd1−xTe alloys.  相似文献   

15.
We have calculated the band structure of Ca3Co2O6 and Ca3CoNiO6 by using the self-consistent full-potential linearized augmented plane-wave method within density function theory and the generalized gradient approximation for the exchange and correlation potential. The spin-orbit interaction is incorporated in the calculations using a second variational procedure. The relation of these band structure calculations to thermoelectric transport is discussed. The results illustrate that transport is highly anisotropic with much larger mobility in the a-b plane than out of the a-b plane, and the introduction of Ni in Ca3Co2O6 alters its electronic structure and its thermoelectric transport properties.  相似文献   

16.
The full potential linearized augmented plane wave (FP-LAPW) method with the GGA+U approach was applied to study the electronic structures of the compound Eu6C60. Present calculations show that the hybridization between the Eu s, d state and the C60 π states plays an essential role in its FM exchange interactions between the 4f electrons and metallic properties.  相似文献   

17.
Inelastic neutron scattering measurements have been performed on the binuclear Ru(V) cluster compound Ba3CaRu2O9. The S = 0 →S = 1 transition split levels of the electronic ground state has been observed. The value for the exchange parameter is very close to that obtained from magnetic susceptibility measurements. The observed intensity ratios of the neutron inelastic scattering transition agree well with those calculated from a simple spin-spin coupling model for the ruthenium pair.  相似文献   

18.
The preferred adsorption sites and the propensity for a self-organised growth of the molybdenum sulfide cluster Mo6S8 on the Au(111) surface are investigated by density-functional band-structure calculations with pseudopotentials and a plane wave basis set. The quasi-cubic cluster preferentially adsorbs via a face and remains structurally intact. It experiences a strong, mostly non-ionic attraction to the surface at several quasi-isoenergetic adsorption positions. A scan of the potential energy surface exhibits only small barriers between adjacent strong adsorption sites. Hence, the cluster may move in a potential well with degenerate local energy minima at room temperature. The analysis of the electronic structure reveals a negligible electron transfer and S-Au hybridised states, which indicate that the cluster-surface interaction is dominated by S-Au bonds, with minor contributions from the Mo atom in the surface vicinity. All results indicate that Mo6S8 clusters on the Au(111) surface can undergo a template-mediated self-assembly to an ordered inorganic monolayer, which is still redox active and may be employed as surface-active agent in the integration of noble metal and ionic or biological components within nano-devices. Therefore, a classical potential model was developed on the basis of the DFT data, which allows to study larger cluster assemblies on the Au(111).  相似文献   

19.
20.
Using first-principles calculations based on the density functional theory, we study the effect of strain on the electronic and magnetic properties of Cr-doped WSe2 monolayer. The results show that no magnetic moment is induced in the Cr-doped WSe2 monolayer without strain. For the Cr substitutions, the impurity states are close to the conduction bands, which indicate n-type doping occurs in this case. Then we applied strain (from −10% to 10%) to the doped system, and find that a little magnetic moment is induced with tensile strain from 6% to 9% and negligible. We find that the influence of strain on the magnetic properties is inappreciable in Cr-doped WSe2. Moreover, the tensile strain appears to be more effective in reducing the band gap of Cr-doped WSe2 monolayer than the compressive strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号