首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamic response of a functionally graded orthotropic strip with an edge crack perpendicular to the boundaries is studied. The material properties are assumed to vary continuously along the thickness direction. Laplace and Fourier transforms are applied to reduce the problem to a singular integral equation. Numerical results are presented to illustrate the influences of parameters such as the nonhomogeneity constant and geometry parameters on the dynamic stress intensity factors (SIFs).  相似文献   

2.
Studied is the problem of a periodic array of cracks in a functionally graded piezoelectric strip bonded to a homogeneous piezoelectric material. The properties of the functionally graded piezoelectric strip, such as elastic modulus, piezoelectric constant and dielectric constant, are assumed in exponential forms and vary along the crack direction. The crack surface condition is assumed to be electrically impermeable or permeable. Integral transform and dislocation density functions are employed to reduce the problem to the solution of a system of singular integral equations. The effects of the periodic crack spacing, material constants and the geometry parameters on the stress intensity factor, the energy release ratio and the energy density factor are studied.  相似文献   

3.
This paper presents the stress field of a screw dislocation in a medium graded in y-direction. The medium is exponentially graded. For such a graded material theories of elasticity as well as gradient elasticity are applied. By means of the stress function technique we found exact analytical solutions of the corresponding master equations. Using the stress field, the Peach–Koehler force is given. The axial symmetry of a screw dislocation is lost due to the gradation in the y-direction.  相似文献   

4.
In this paper closed-form expressions of the electroelastic field induced by a piezoelectric screw dislocation in a functionally graded piezoelectric plane and half-plane are derived. The material properties are assumed to vary exponentially along the x and y-directions. The solution for a screw dislocation in a functionally graded piezoelectric plane is obtained through introduction of two generalized stress functions. The solution for a screw dislocation in a functionally graded piezoelectric half-plane is derived by using the method of image. It is also found that the interaction between a piezoelectric screw dislocation and a circular insulating hole in the functionally graded piezoelectric material can be solved by using series expansion method.  相似文献   

5.
A three-dimensional enriched finite-element methodology is presented to compute stress intensity factors for three-dimensional cracks contained in functionally graded materials (FGMs). A general-purpose 3D finite-element based fracture analysis program, FRAC3D, is enhanced to include this capability. First, using available solutions from the literature, comparisons have been made in terms of stresses under different loading conditions, such as uniform tensile, bending and thermal loads. Mesh refinement studies are also performed. The fracture solutions are obtained for edge cracks in an FGM strip and surface cracks in a finite-thickness FGM plate and compared with existing solutions in the literature. Further analyses are performed to study the behavior of stress intensity factor near the free surface where crack front terminates. It is shown that three-dimensional enriched finite elements provide accurate and efficient fracture solutions for three-dimensional cracks contained in functionally graded materials.  相似文献   

6.
In this paper, we consider the elasto-static problem of an embedded crack in a graded orthotropic coating bonded to a homogeneous substrate subject to statically applied normal and tangential surface loading. The crack direction is parallel to the free surface. The coating is graded in the thickness direction and is orthogonal to the crack direction. This coating is modelled as a non-homogeneous medium with an orthotropic stress–strain law. The equivalent crack surface stresses are first obtained and substituted in the plane elasticity equations. Using integral transforms, the governing equations are converted into singular integral equations which are solved numerically to yield the displacement field as well as the crack-tip stress intensity factors. This study presents a complete theoretical formulation for the problem in the static case. A numerical predictive capability for solving the singular integral equations and computing the crack-tip stress intensity factors is proposed. Since the loading is compressive, a previously developed crack-closure algorithm is applied to avoid interpenetration of the crack faces. The main objective of the paper is to investigate the effects of the material orthotropy and non-homogeneity of the graded coating on the crack-tip stress intensity factors, with and without using the crack-closure algorithm, for the purpose of gaining better understanding on the behavior and design of graded coatings.  相似文献   

7.
The transient fracture behavior of a functionally graded layered structure subjected to an in-plane impact load is investigated. The studied structure is composed of two homogeneous layers and a functionally graded interlayer with a crack perpendicular to the boundaries. The impact load is applied on the face of the crack. Fourier transform and Laplace transform methods are used to formulate the present problem in terms of a singular integral equation in Laplace transform domain. Considering variations of parameters such as the nonhomogeneity constant, the thickness ratio and the crack length, the dynamic stress intensity factors (DSIFs) in time domain are studied and some meaningful conclusions are obtained.The project supported by the National Science Foundation for Excellent Young Investigators (10325208), the National Natural Science Foundation of China (10432030) and the China Postdoctoral Science Foundation (2004036018)The English text was polished by Ron Marshall.  相似文献   

8.
The static and dynamic anti-plane problem for a functionally graded coating–substrate structure containing a periodic array of parallel cracks, which are perpendicular to the boundary, is considered. Integral-transform techniques are employed to reduce the problem to the solution of an integral equation with hypersingular kernels. Numerical results are presented to show the influence of geometry, material properties and material gradient parameter on the fracture behavior.  相似文献   

9.
The dynamic stress intensity factors (DSIFs) of two 3D rectangular cracks in a transversely isotropic elastic material under an incident harmonic stress wave are investigated by generalized Almansi’s theorem and the Schmidt method in the present paper. Using 2D Fourier transform and defining the jumps of displacement components across the crack surface as the unknown functions, three pairs of dual integral equations are derived. To solve the dual integral equations, the jumps of the displacement components across the crack surfaces are expanded in a series of Jacobi polynomials. Numerical examples are provided to show the effects of the geometric shape of the rectangular crack, the characteristics of the harmonic wave and the distance between two rectangular cracks on the DSIFs of the transversely isotropic elastic material.  相似文献   

10.
The torsional impact response of a penny-shaped crack in an unbounded transversely isotropic solid is considered. The shear moduli are assumed to be functionally graded such that the mathematics is tractable. Laplace transform and Hankel transform are used to reduce the problem to solving a Fredholm integral equation. The crack tip stress fields are obtained. Investigated are the influence of material nonhomogeneity and orthotropy on the dynamic stress intensity factor. The peak value of the dynamic stress intensity factor can be suppressed by increasing the shear moduli's gradient and/or increasing the shear modulus in a direction perpendicular to the crack surface.  相似文献   

11.
The thermal fracture of a bimaterial consisting of a homogeneous material and a functionally graded material (FGM) with a system of internal cracks and an interface crack is investigated. The bimaterial is subjected to a heat flux. The thermal properties of FGM are assumed to be continues functions of the thickness coordinate, while the elastic properties are constants. The method of the solution is based on the singular integral equations. For a special case where the interface crack is much larger than the internal cracks in the FGM the asymptotic analytical solution of the problem is obtained as series in a small parameter (the ratio between sizes of the internal and interface crack) and the thermal stress intensity factors (TSIFs) are derived as functions of geometry of the problem and material characteristics. A parametric analysis of the effects of the location and orientation of the cracks and of the inhomogeneity parameter of FGM’s thermal conductivity on the TSIFs is performed. The results are applicable to such kinds FGMs as ceramic/ceramic FGMs, e.g., TiC/SiC, MoSi2/Al2O3 and MoSi2/SiC, and also some ceramic/metal FGMs.  相似文献   

12.
Summary The propagation of an anti-plane moving crack in a functionally graded piezoelectric strip (FGPS) is studied in this paper. The governing equations for the proposed analysis are solved using Fourier cosine transform. The mixed boundary value problems of the anti-plane moving crack, which is assumed to be either impermeable or permeable, are formulated as dual integral equations. By appropriate transformations, the dual integral equations are reduced to Fredholm integral equations of the second kind. For the impermeable crack, the stress intensity factor (SIF) of the crack in the FGPS depends on both the mechanical and electric loading, whereas, the SIF for the permeable crack depends only on the mechanical loading. The results obtained show that the gradient parameter of the FGPS and the velocity of the crack have significant influence on the dynamic SIF.Support from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. HKU 7081/00E) is acknowledged. Support from the National Natural Science Foundation of China (Project No. 10072041) is also acknowledged.  相似文献   

13.
Dynamic response for functionally graded materials with penny-shaped cracks   总被引:1,自引:0,他引:1  
This paper provides a method for studying the penny-shaped cracks configuration in functionally graded material(FGM) structures subjected to dynamic or steady loading. It is assumed that the FGMs are transversely isotropic and all the material properties only depend on the axial coordinatez. In the analysis, the elastic region is treated as a number of layers. The material properties are taken to be constants for each layer. By utilizing the Laplace transform and Hankel transform technique, the general solutions for the layers are derived. The dual integral equations are then obtained by introducing the mechanical boundary and layer interface conditions via the flexibility/stiffness matrix approach. The stress intensity factors are computed by solving dual integral equations numerically in Laplace transform domain. The solution in time domain is obtained by utilizing numerical Laplace inverse. The main advantage of the present model is its ability for treating multiple crack configurations in FGMs with arbitrarily distributed and continuously varied material properties by dividing the FGMs into a number of layers with the properties of each layer slightly different from one another. This work was supported by Failure Mechanics Laboratory of State Education Commission and the Post-doctor Research Fund of China.  相似文献   

14.
冯文杰  Su RKL 《力学学报》2005,37(1):120-124
研究位于功能梯度层和外部均匀材料之间多个环形界面裂纹的扭转冲击问题,功能梯度材料 (FGM)粘结在两种不同的弹性材料之间,功能梯度层和外部材料之间环形界面裂纹的数目是任意的.引进积分变换和位错密度函数将问题化为求解Laplace域里标准的Cauchy奇异积分方程,进而化为求解代数方程;应用Laplace数值反演技术,计算时域里的动应力强度因子(DSIF).考查了结构几何尺度和材料特性对裂尖动态断裂特性的影响.数值结果表明,DSIF存在一个主峰,到达主峰后,在其相应的静态值附近波动并最终趋于稳定;增加FGM的梯度能减小DSIF的峰值.  相似文献   

15.
The problem of a Griffith crack in an unbounded orthotropic functionally graded material subjected to antipole shear impact was studied. The shear moduli in two directions of the functionally graded material were assumed to vary proportionately as definite gradient. By using integral transforms and dual integral equations, the local dynamic stress field was obtained. The results of dynamic stress intensity factor show that increasing shear moduli’s gradient of FGM or increasing the shear modulus in direction perpendicular to crack surface can restrain the magnitude of dynamic stress intensity factor.  相似文献   

16.
The fracture problem of a crack in a functionally graded strip with its properties varying in a linear form along the strip thickness under an anti-plane load is considered. The embedded anti-plane crack is located in the middle of strip half way through the thickness. The third mode stress intensity factor is derived using two different methods. In the first method, by employing Fourier integral transforms, the governing equation is converted to a singular integral equation, which is subsequently solved numerically by the collocation method based on Chebyshev polynomials. Then, the problem is solved by means of finite element method in which quadrilateral 8-node singular elements around each crack tip are used. After inspecting the validity of the solution technique, effects of crack geometry and non-homogeneous material parameter on the stress intensity, energy release and energy density are studied and the results of analytical and FEM solutions are compared.  相似文献   

17.
The basic solution of two parallel mode-I permeable cracks in functionally graded piezoelectric materials was studied in this paper using the generalized Almansi’s theorem. To make the analysis tractable, it was assumed that the shear modulus varies exponentially along the horizontal axis parallel to the crack. The problem was formulated through a Fourier transform into two pairs of dual integral equations, in which unknown variables are jumps of displacements across the crack surface. To solve the dual integral equations, the jumps of displacements across the crack surfaces were directly expanded as a series of Jacobi polynomials. The solution of the present paper shows that the singular stresses and the singular electric displacements at the crack tips in functionally graded piezoelectric materials carry the same forms as those in homogeneous piezoelectric materials; however, the magnitudes of intensity factors depend on the gradient of functionally graded piezoelectric material properties. It was also revealed that the crack shielding effect is also present in functionally graded piezoelectric materials.  相似文献   

18.
Summary  In this paper, the dynamic anti-plane crack problem of two dissimilar homogeneous piezoelectric materials bonded through a functionally graded interfacial region is considered. Integral transforms are employed to reduce the problem to Cauchy singular integral equations. Numerical results illustrate the effect of the loading combination parameter λ, material property distribution and crack configuration on the dynamic stress and electric displacement intensity factors. It is found that the presence of the dynamic electric field could impede of enhance the crack propagation depending on the time elapsed and the direction of applied electric impact. Received 4 December 2001; accepted for publication 9 July 2002 This work is supported by the National Natural Science Foundation of China through Grant No. 10132010.  相似文献   

19.
20.
This paper is to study the non-axisymmetric two-dimensional problem of thermal stresses in an infinite matrix with a functionally graded coated circular inclusion based on complex variable method. With using the method of piece-wise homogeneous layers, the general solution for the functionally graded coating having radial arbitrary elastic properties is derived when the matrix is subjected to uniform heat flux at infinity, and then numerical results are presented for several special examples. It is found that the existence of the functionally graded coating can change interfacial thermal stresses, and choosing proper change ways of the radial elastic properties in the coating can obviously reduce the thermal stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号