首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 307 毫秒
1.
2.
Quantum corrections to the properties of a homogeneous interacting Bose gas at zero temperature can be calculated as a low-density expansion in powers of , where is the number density and a is the S-wave scattering length. We calculate the ground state energy density to second order in . The coefficient of the correction has a logarithmic term that was calculated in 1959. We present the first calculation of the constant under the logarithm. The constant depends not only on a, but also on an extra parameter that describes the low energy scattering of the bosons. In the case of alkali atoms, we argue that the second order quantum correction is dominated by the logarithmic term, where the argument of the logarithm is ,and is the length scale set by the van der Waals potential. Received 2 February 1999  相似文献   

3.
Axial-strain-induced torsions of chiral double-walled carbon nanotubes are studied. Effects of interlayer van der Waals interaction, chirality and curvature of inner and outer tubes are investigated. Results show that the van der Waals interactions change dramatically the induced torsion, while the chirality and curvature dependences are rather weak.  相似文献   

4.
Higher Rydberg states of NO trapped in rare gas matrices have been studied by inducing Rydberg-Rydberg transitions from the lowest Rydberg state and detecting its fluorescence depletion. This technique unravels Rydberg states, which cannot be accessed by ground state absorption. However, no clear cut Rydberg series show up. The data show a compression of the n-(n + 1) splittings between Rydberg states, as well as of the splittings. The results are rationalised in terms of the quantum defect model and the lack of extended Rydberg series is due to the compression of high-n Rydberg states in a tiny energy region below the ionisation potential. Finally, fluorescence depletion data of NO trapped in amorphous sites (the so-called red sites) of solid Ar can be interpreted in terms of the gas phase NO-Ar van der Waals data. A general discussion on the fate of Rydberg states in van der Waals complexes, in liquids, and in solids is presented in an attempt to relate the data in these different media. Received 28 July 1999 and Received in final form 8 November 1999  相似文献   

5.
6.
Favourable band alignment and excellent visible light response are vital for photochemical water splitting. In this work, we have theoretically investigated how ferroelectric polarization and its reversibility in direction can be utilized to modulate the band alignment and optical absorption properties. For this objective, 2D van der Waals heterostructures (HTSs) are constructed by interfacing monolayer MoS2 with ferroelectric In2Se3. We find the switch of polarization direction has dramatically changed the band alignment, thus facilitating different type of reactions. In In2Se3/MoS2/In2Se3 heterostructures, one polarization direction supports hydrogen evolution reaction and another polarization direction can favour oxygen evolution reaction. These can be used to create tuneable photocatalyst materials where water reduction reactions can be selectively controlled by polarization switching. The modulation of band alignment is attributed to the shift of reaction potential caused by spontaneous polarization. Additionally, the formed type-II van der Waals HTSs also significantly improve charge separation and enhance the optical absorption in the visible and infrared regions. Our results pave a way in the design of van der Waals HTSs for water splitting using ferroelectric materials.  相似文献   

7.
We study the spontaneous emission of atoms near an optical nanofiber and analyze the coupling efficiency of the spontaneous emission into a nanofiber. We also investigate the influence of the van der Waals interaction of atoms with the surface of the optical nanofiber on the spectrum of coupled light. Using, as an example, 85Rb atoms we show that the van der Waals interaction may considerably extend the red wing of the spontaneous emission line and, accordingly, produce a well-defined asymmetry of the spontaneous emission spectrum coupled into an optical nanofiber.  相似文献   

8.
Using density functional theory with a semiempirical van der Waals approach proposed by Grimme, the adsorption behavior of carbon monoxide on a gold monolayer supported by graphene or monolayer hexagonal boron nitride has been investigated. Based on the changes in the Dirac cone of graphene and a Bader charge analysis, we observe that the Au(111) monolayer gains a small charge from graphene and monolayer h-BN. The adsorbed CO molecule adopts similar adsorption configurations on Au(111)/graphene and Au(111)/h-BN with Au-C distance 2.17?2.50 Å and Au-C-O angle of 123.9°–139.6°. Moreover, we found that for low CO coverages, bonding to the gold surface is surprisingly energy-favorable. Yet the CO adsorption binding energy diminishes at high coverage due to the repulsive van der Waals interactions between CO molecules.  相似文献   

9.
The evolution of a Universe confined onto a 3-brane embedded in a five-dimensional space-time is investigated where the cosmological fluid on the brane is modeled by the van der Waals equation of state. It is shown that the Universe on the brane evolves in such a manner that three distinct periods concerning its acceleration field are attained: (a) an initial accelerated epoch where the van der Waals fluid behaves like a scalar field with a negative pressure; (b) a past decelerated period which has two contributions, one of them is related to the van der Waals fluid which behaves like a matter field with a positive pressure, whereas the other contribution comes from a term of the Friedmann equation on the brane which is inversely proportional to the scale factor to the fourth power and can be interpreted as a radiation field, and (c) a present accelerated phase due to a cosmological constant on the brane.  相似文献   

10.
We have investigated spontaneous surface instabilities of very thin polymer films. Film stability and the wavelength of the dominating unstable mode were found to depend sensitively on the media adjacent to the film. Our experimental results cannot be explained by van der Waals interactions alone. To account for the presence of an additional destabilizing force, we propose that the geometrical confinement of thermally excited acoustic waves gives rise to a force that is strong enough to destabilize thin films. This thermoacoustic effect is of similar magnitude as van der Waals forces.  相似文献   

11.
We study the behavior of systems in which the interaction contains a long-range component that does not dominate the critical behavior. Such a component is exemplified by the van der Waals force between molecules in a simple liquid-vapor system. In the context of the mean spherical model with periodic boundary conditions we are able to identify, for temperatures close above T c, finite-size contributions due to the subleading term in the interaction that are dominant in this region decaying algebraically as a function of L. This mechanism goes beyond the standard formulation of the finite-size scaling but is to be expected in real physical systems. We also discuss other ways in which critical point behavior is modified that are of relevance for analysis of Monte Carlo simulations of such systems. Received 21 November 2000 and Received in final form 28 February 2001  相似文献   

12.
Cases in which a functional groups form distinct phases are known in material science in general and specifically in polymer and surfactant sciences. To calculate the van der Waals forces associated with such phases there is a need to evaluate the refractive index of those phases. We expand and generalize a method to estimate the refractive index of such ‘functional group phase’ and discuss how to use the refractive indices to calculate the interaction energies associated with such functional group phases and thereby modify the total theoretically calculated van der Waals forces.  相似文献   

13.
The hybrid form is a combination of the Rydberg potential and the London inverse-sixth-power energy. It is accurate at all relevant distance scales and simple enough for use in all-atom simulations of biomolecules. One may compute the parameters of the hybrid potential for the ground state of a pair of neutral atoms from their internuclear separation, the depth and curvature of their potential at its minimum, and from their van der Waals coefficient of dispersion C6.  相似文献   

14.
The density-density plot of the critical lines of the van der Waals equation at the van Laar point is analyzed through its algebraic properties. It is shown that this curve is an irreducible expression of the fifth degree of genus one. In addition, we show the topology of the second branch, i.e., theT=0 solution, which will interact with the first branch as soon as the energy parameters are slightly different from the van Laar values. Finally, we analyze the behavior of the van der Waals equation near the point at which liquid-liquid separation takes place.  相似文献   

15.
The spontaneous break-up of thin films is commonly attributed to the destabilizing effect of van der Waals forces. Dispersion forces can be considered in terms of the confinement of the electromagnetic fluctuation spectrum. The principle of confinement is more general than the usual argument of interacting dipole fluctuations. It includes also disjoining pressures that are caused by thermal fluctuations. In this context, we review recent publications on the dewetting of thin polymer films, and argue that the presence of an acoustic disjoining pressure is necessary to adequately describe some of these experimental results.Received: 1 August 2003PACS: 47.20.Ma Interfacial instability - 68.15. + e Liquid thin films - 43.25.Qp Radiation pressure  相似文献   

16.
The rigorous perturbation theory of the evolution of a small-sized cluster is developed in the framework of the density functional method. The solution of the general equation for relaxation of the order parameter field is derived in the form of a power series of the metastability parameter (an analog of supersaturation or supercooling) and the curvature. The profile of the cluster density and the cluster growth rate are determined in an analytical form. The surface tension and the Tolman parameter are calculated. The results obtained are applied to a van der Waals three-dimensional gas and a two-dimensional lattice gas. It is shown that the theoretical results are in good agreement with experimental data.  相似文献   

17.
The hydrophobic interaction arises from the ordered structure of water around nonpolar groups of molecules in an aqueous solvent. Because biological systems are made of various macromolecules and amphiphiles which are suspended in aqueous solution, the hydrophobic interaction plays a very important role in the formation of higher-order structure and phase transitions in biological systems. Considering the hydrophobic interaction, the van der Waals interaction and the entropic effect, an equation of state of a lipid membrane was obtained which was analogous to the van der Waals equation. The characteristics of the lipid bilayer phase transition as well as the phase behaviors of a lipid monolayer were explained by this equation of state. Experimental evidence was obtained from ultrasonic measurements which indicated that its phase transition accompanys significant critical phenomena. Analysis of the hydrophobicity of amino acid sequences revealed that the morphology of the proteins was determined by the hydrophobicity alone. The essential role of the hydrophobic interaction in the morphogenesis of proteins could be confirmed by a denaturation experiment on a soluble protein, carbonic anhydrase B. Fluorescence measurements showed that an intermediate state, the so-called molten globule state, had a quite hydrophobic core, indicating that the globule shape of this protein is stabilized by the hydrophobic interaction.  相似文献   

18.
二维范德瓦尔斯材料(可简称二维材料)已发展成为备受瞩目的材料大家族,而由其衍生的二维范德瓦尔斯异质结构的集成、性能及应用是现今凝聚态物理和材料科学领域的研究热点之一.二维范德瓦尔斯异质结构为探索丰富多彩的物理效应和新奇的物理现象,以及构建新型的自旋电子学器件提供了灵活而广阔的平台.本文从二维材料的转移技术着手,介绍二维范德瓦尔斯异质结构的构筑、性能及应用.首先,依据湿法转移和干法转移的分类,详细介绍二维范德瓦尔斯异质结构的制备技术,内容包括转移技术的通用设备、常用转移方法的具体操作步骤、三维操纵二维材料的方法、异质界面清洁.随后介绍二维范德瓦尔斯异质结构的性能和应用,重点介绍二维磁性范德瓦尔斯异质结构,并列举在二维范德瓦尔斯磁隧道结和摩尔超晶格领域的应用.因此,二维材料转移技术的发展和优化将进一步助力二维范德瓦尔斯异质结构在基础科学研究和实际应用上取得突破性的成果.  相似文献   

19.
First-principles calculation is carried out on the interface of the ZnS(001) monolayerand Cu(111) surface. It is found that the ZnS monolayer significantly reconstructs aftergeometry optimization. The out-of-plane S atom has a positive displacement in thez directionwhile other atoms (Zn and S) have small displacements on the ZnS monolayer. The interfacestacking sequence has an influence on the flatness of the ZnS monolayer and the bindingenergy of the interface. There are two approaches for the ZnS monolayer to reach thelowest energy state which take place on the two kinds of S atoms in the ZnS monolayer andresult in the bulging feature. The van der Waals (vdW) interaction exists between ZnSmonolayer and Cu surface.  相似文献   

20.
二维范德瓦尔斯材料(可简称二维材料)已发展成为备受瞩目的材料大家族,而由其衍生的二维范德瓦尔斯异质结构的集成、性能及应用是现今凝聚态物理和材料科学领域的研究热点之一.二维范德瓦尔斯异质结构为探索丰富多彩的物理效应和新奇的物理现象,以及构建新型的自旋电子学器件提供了灵活而广阔的平台.本文从二维材料的转移技术着手,介绍二维范德瓦尔斯异质结构的构筑、性能及应用.首先,依据湿法转移和干法转移的分类,详细介绍二维范德瓦尔斯异质结构的制备技术,内容包括转移技术的通用设备、常用转移方法的具体操作步骤、三维操纵二维材料的方法、异质界面清洁.随后介绍二维范德瓦尔斯异质结构的性能和应用,重点介绍二维磁性范德瓦尔斯异质结构,并列举在二维范德瓦尔斯磁隧道结和摩尔超晶格领域的应用.因此,二维材料转移技术的发展和优化将进一步助力二维范德瓦尔斯异质结构在基础科学研究和实际应用上取得突破性的成果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号