首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a differential equation of fractional order with uncertainty and present the concept of solution. It extends, for example, the cases of first order ordinary differential equations and of differential equations with uncertainty. Some examples are presented.  相似文献   

2.
3.
In this paper, we shall discuss the properties of the well-known Mittag-Leffler function, and consider the existence and uniqueness of solution of the initial value problem for fractional differential equation involving Riemann-Liouville sequential fractional derivative by using monotone iterative method.  相似文献   

4.
In this paper viability results for nonlinear fractional differential equations with the Caputo derivative are proved. We give the sufficient condition that guarantees fractional viability of a locally closed set with respect to nonlinear function. As an example we discuss positivity of solutions, particularly in linear case.  相似文献   

5.
A new class of fractional differential equations with the Riesz–Caputo derivative is proposed and the physical meaning is introduced in this paper. The boundary value problem is investigated under some conditions. Leray–Schauder and Krasnoselskii’s fixed point theorems in a cone are adopted. Existence of positive solutions is provided. Finally, two examples with numerical solutions are given to support theoretical results.  相似文献   

6.
7.
We are concerned in this paper with the existence of mild solutions to the Cauchy Problem for the fractional differential equation with nonlocal conditions: D q x(t)=Ax(t)+t n f(t,x(t),Bx(t)), t∈[0,T], n∈ℤ+, x(0)+g(x)=x 0, where 0<q<1, A is the infinitesimal generator of a C 0-semigroup of bounded linear operators on a Banach space X.  相似文献   

8.
Consider the fractional differential equation
Dαx=f(t,x),  相似文献   

9.
In this paper, we investigate the existence of positive solutions for the singular fractional boundary value problem: Dαu(t)+f(t,u(t),Dμu(t))=0, u(0)=u(1)=0, where 1<α<2, 0<μ?α−1, Dα is the standard Riemann-Liouville fractional derivative, f is a positive Carathéodory function and f(t,x,y) is singular at x=0. By means of a fixed point theorem on a cone, the existence of positive solutions is obtained. The proofs are based on regularization and sequential techniques.  相似文献   

10.
11.
We study a class of stochastic fractional partial differential equations of order α>1α>1 driven by a (pure jump) Lévy space–time white noise and a fractional noise. We prove the existence and uniqueness of the global mild solution by the fixed point principle under some suitable assumptions.  相似文献   

12.
13.
In a recent paper [Odibat Z, Momani S, Erturk VS. Generalized differential transform method: application to differential equations of fractional order, Appl Math Comput. submitted for publication] the authors presented a new generalization of the differential transform method that would extended the application of the method to differential equations of fractional order. In this paper, an application of the new technique is applied to solve fractional differential equations of the form y(μ)(t)=f(t,y(t),y(β1)(t),y(β2)(t),…,y(βn)(t)) with μ>βn>βn-1>…>β1>0, combined with suitable initial conditions. The fractional derivatives are understood in the Caputo sense. The method provides the solution in the form of a rapidly convergent series. Numerical examples are used to illustrate the preciseness and effectiveness of the new generalization.  相似文献   

14.
In this paper we give a sufficient condition for the exponential asymptotic behavior of solutions of a general class of linear fractional stochastic differential equations with time-varying delays. Our obtained results allow us to employ the theories developed for the deterministic systems and to illustrate this, some examples are provided.  相似文献   

15.
This paper presents retarded integral inequalities of Henry-Gronwall type. Applying these inequalities, we study certain properties of solutions to fractional differential equations with delay.  相似文献   

16.
In the first part of this paper we study the regularity properties of solutions of initial value problems of linear multi-term fractional differential equations. We then use these results in the convergence analysis of a polynomial spline collocation method for solving such problems numerically. Using an integral equation reformulation and special non-uniform grids, global convergence estimates are derived. From these estimates it follows that the method has a rapid convergence if we use suitable nonuniform grids and the nodes of the composite Gaussian quadrature formulas as collocation points. Theoretical results are verified by some numerical examples.  相似文献   

17.
18.
In this paper we obtain the existence of solutions to some classes of partial fractional differential equations. Applications include the existence of solutions to a fractional heat-like equation.  相似文献   

19.
In this paper, we investigate the global solvability in L1(0,1) of a set-valued system of nonlinear fractional differential equations with hysteresis. Some existence theorems for both single and multivalued systems are proved.  相似文献   

20.
In this paper, we investigate the existence of positive solutions of singular super-linear (or sub-linear) integral boundary value problems for fractional differential equation involving Caputo fractional derivative. Necessary and sufficient conditions for the existence of C3[0, 1] positive solutions are given by means of the fixed point theorems on cones. Our nonlinearity f(tx) may be singular at t = 0 and/or t = 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号