首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this article we study the 3D Navier-Stokes equations with Navier friction boundary condition in thin domains. We prove the global existence of strong solutions to the 3D Navier-Stokes equations when the initial data and external forces are in large sets as the thickness of the domain is small. We generalize the techniques developed to study the 3D Navier-Stokes equations in thin domains, see [G. Raugel, G. Sell, Navier-Stokes equations on thin 3D domains I: Global attractors and global regularity of solutions, J. Amer. Math. Soc. 6 (1993) 503-568; G. Raugel, G. Sell, Navier-Stokes equations on thin 3D domains II: Global regularity of spatially periodic conditions, in: Nonlinear Partial Differential Equations and Their Application, College de France Seminar, vol. XI, Longman, Harlow, 1994, pp. 205-247; R. Temam, M. Ziane, Navier-Stokes equations in three-dimensional thin domains with various boundary conditions, Adv. Differential Equations 1 (1996) 499-546; R. Temam, M. Ziane, Navier-Stokes equations in thin spherical shells, in: Optimization Methods in Partial Differential Equations, in: Contemp. Math., vol. 209, Amer. Math. Soc., Providence, RI, 1996, pp. 281-314], to the Navier friction boundary condition by introducing a new average operator Mε in the thin direction according to the spectral decomposition of the Stokes operator Aε. Our analysis hinges on the refined investigation of the eigenvalue problem corresponding to the Stokes operator Aε with Navier friction boundary condition.  相似文献   

2.
We study a system of 3D Navier-Stokes equations in a two-layer parallelepiped-like domain with an interface coupling of the velocities and mixed (free/periodic) boundary condition on the external boundary. The system under consideration can be viewed as a simplified model describing some features of the mesoscale interaction of the ocean and atmosphere. In case when our domain is thin (of order ε), we prove the global existence of the strong solutions corresponding to a large set of initial data and forcing terms (roughly, of order ε−2/3). We also give some results concerning the large time dynamics of the solutions. In particular, we prove a spatial regularity of the global weak attractor.  相似文献   

3.
There are only very few results on the existence of unique local in time strong solutions of the Navier-Stokes equations for completely general domains ΩR3, although domains with edges and corners, bounded or unbounded, are very important in applications. The reason is that the Lq-theory for the Stokes operator A is available in general only in the Hilbert space setting, i.e., with q=2. Our main result for a general domain Ω is optimal in a certain sense: Consider an initial value and a zero external force. Then the condition is sufficient and necessary for the existence of a unique local strong solution uL8(0,T;L4(Ω)) in some interval [0,T), 0<T, with u(0)=u0, satisfying Serrin’s condition . Note that Fujita-Kato’s sufficient condition u0D(A1/4) is strictly stronger and therefore not optimal.  相似文献   

4.
Global existence of weak solutions to the Navier-Stokes equations in a cylindrical domain under boundary slip conditions and with inflow and outflow is proved. To prove the energy estimate, crucial for the proof, we use the Hopf function. This makes it possible to derive an estimate such that the inflow and outflow need not vanish as t→∞. The proof requires estimates in weighted Sobolev spaces for solutions to the Poisson equation. Our result is the first step towards proving the existence of global regular special solutions to the Navier-Stokes equations with inflow and outflow.  相似文献   

5.
6.
In this paper, we study the partial regularity of the general weak solution u∈L∞(0,T;L2(Ω))∩L2(0,T;H1(Ω)) to the Navier-Stokes equations, which include the well-known Leray-Hopf weak solutions. It is shown that there is a absolute constant ε such that for the weak solution u, if either the scaled local Lq(1?q?2) norm of the gradient of the solution, or the scaled local ) norm of u is less than ε, then u is locally bounded. This implies that the one-dimensional Hausdorff measure is zero for the possible singular point set, which extends the corresponding result due to Caffarelli et al. (Comm. Pure Appl. Math. 35 (1982) 717) to more general weak solution.  相似文献   

7.
8.
In this paper, we consider the initial–boundary value problem of the 3D primitive equations for oceanic and atmospheric dynamics with only horizontal diffusion in the temperature equation. Global well-posedness of strong solutions are established with H2H2 initial data.  相似文献   

9.
This paper deals with the solvability of the Navier-Stokes equations on manifolds with boundary. In particular, we concentrate on the inhomogeneous slip boundary condition. Our formulation of the equations takes into account a curvature term which results from a proper derivation of the Navier-Stokes equations. This term has not been considered in prior work. During the work on this version, the author received technical support through a fellowship of the DFG  相似文献   

10.
We study the asymptotic behavior of the energy of weak solutions of Navier-Stokes equations as t→∞. We characterize the space of the initial data which causes a concentration of the kinetic energy in the phase space. Moreover, an explicit convergence rate is obtained.  相似文献   

11.
In this paper we give a new proof of the partial regularity of solutions to the incompressible Navier-Stokes equation in dimension 3 first proved by Caffarelli, Kohn and Nirenberg. The proof relies on a method introduced by De Giorgi for elliptic equations. This work was supported in part by NSF Grant DMS-0607953.  相似文献   

12.
We prove that any Markov solution to the 3D stochastic Navier-Stokes equations driven by a mildly degenerate noise (i.e. all but finitely many Fourier modes are forced) is uniquely ergodic. This follows by proving strong Feller regularity and irreducibility.  相似文献   

13.
This paper is concerned with existence of global weak solutions to a class of compressible Navier-Stokes equations with density-dependent viscosity and vacuum. When the viscosity coefficient μ is proportional to ρθ with , a global existence result is obtained which improves the previous results in Fang and Zhang (2004) [4], Vong et al. (2003) [27], Yang and Zhu (2002) [30]. Here ρ is the density. Moreover, we prove that the domain, where fluid is located on, expands outwards into vacuum at an algebraic rate as the time grows up due to the dispersion effect of total pressure. It is worth pointing out that our result covers the interesting case of the Saint-Venant model for shallow water (i.e., θ=1, γ=2).  相似文献   

14.
We estimate the asymptotic behavior for the Stokes solutions, with external forces first. We found that if there are external forces, then the energy decays slowly even if the forces decay quickly. Then, we also obtain the asymptotic behavior in the temporal-spatial direction for weak solutions of the Navier-Stokes equations. We also provide a simple example of external forces which shows that the Stokes solution does not decay quickly.  相似文献   

15.
In this paper we consider the existence and uniqueness of weak energy solutions to a stochastic 2-dimensional non-Lipschitz Navier-Stokes equation perturbed by the cylindrical Wiener process W(t) in a bounded or unbounded domain D with the smooth boundary ∂D or D=R2:
  相似文献   

16.
We show that an isolated singularity at the origin 0 of a smooth solution (u,p) of the stationary Navier-Stokes equations is removable if the velocity u satisfies uLn or |u(x)|=o(|x|-1) as x→0. Here n?3 denotes the dimension. As a byproduct of the proof, we also obtain a new interior regularity theorem.  相似文献   

17.
In this paper, we consider the Cauchy problem for the incompressible Navier-Stokes equations with bounded initial data and derive a priori estimates of the maximum norm of all derivatives of the solution in terms of the maximum norm of the initial velocity field. For illustrative purposes, we first derive corresponding a priori estimates for certain parabolic systems. Because of the pressure term, the case of the Navier-Stokes equations is more difficult, however.  相似文献   

18.
The Navier problem is to find a solution of the steady-state Navier-Stokes equations such that the normal component of the velocity and a linear combination of the tangential components of the velocity and the traction assume prescribed value a and s at the boundary. If Ω is exterior it is required that the velocity converges to an assigned constant vector u0 at infinity. We prove that a solution exists in a bounded domain provided ‖aL2(∂Ω) is less than a computable positive constant and is unique if ‖aW1/2,2(∂Ω)+‖sL2(∂Ω) is suitably small. As far as exterior domains are concerned, we show that a solution exists if ‖aL2(∂Ω)+‖au0nL2(∂Ω) is small.  相似文献   

19.
20.
Let Ω be an open domain of class C2 contained in R3, let L2(Ω)3 be the Hilbert space of square integrable functions on Ω and let H[Ω]?H be the completion of the set, , with respect to the inner product of L2(Ω)3. A well-known unsolved problem is that of the construction of a sufficient class of functions in H which will allow global, in time, strong solutions to the three-dimensional Navier-Stokes equations. These equations describe the time evolution of the fluid velocity and pressure of an incompressible viscous homogeneous Newtonian fluid in terms of a given initial velocity and given external body forces. In this paper, we use the analytic nature of the Stokes semigroup to construct an equivalent norm for H, which provides strong bounds on the nonlinear term. This allows us to prove that, under appropriate conditions, there exists a number u+, depending only on the domain, the viscosity, the body forces and the eigenvalues of the Stokes operator, such that, for all functions in a dense set D contained in the closed ball B(Ω)?B of radius in H, the Navier-Stokes equations have unique, strong, solutions in C1((0,),H).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号