首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在Langmuir-Blodgett单分子膜表面内的长程能量转移   总被引:1,自引:0,他引:1  
本文讨论了二维有序单分子膜内不同分子间的能量转移问题。由于膜内J-聚体的存在,使得分子间的长程(~103Å)能量转移成为可能,从而扩大了给体分子接受能量的面积,靠Foster转移和激子转移的协同作用,提高了能量转移效率。J-聚体成分的增多或减少,直接影响着能量转移效率的高低。  相似文献   

2.
Nonlinear optical effects in a one-dimensional periodic medium containing spatially oriented molecules of J aggregates of a dye and silver nanoparticles are studied. It is shown that, in such composite medium, the presence of a permanent dipole moment of an exciton transition of molecules of J aggregates results in the appearance of new nonlinear optical properties.  相似文献   

3.
Electromagnetic field propagation is analyzed in a one-dimensional Bragg grating consisting of periodically arranged linear molecules making up a resonant medium. Dye J-aggregates and conjugated polymers are considered as examples of the medium. Both adiabatic and nonadiabatic dynamics of the acoustic waves generated by electromagnetic field in the system are examined. The effects of exciton-phonon and exciton-phonon-photon interactions on the band structure and formation of self-localized excitations are examined on various time scales. A new mechanism for controlling bandgap parameters in a bistable regime is described. Some effects of electromagnetic-field nonuniformity on generation of phonons in molecules and exciton self-localization are investigated.  相似文献   

4.
The optical properties of microcavities (MCs) are strongly dependent on both polarization of incident and emitted light and its angle of observation. Here we report the measurements of cw- and time-resolved photoluminescence (PL) observed at negative detuning and at resonance for s- and p-polarization in the strong coupling regime of a planar MC containing J-aggregates of a cyanine dye. Following non-resonant excitation, the emission spectra consist of three types of features: direct J-aggregate exciton emission, polariton emission, and uncoupled monomer emission through the transmission maxima of the distributed Bragg reflector beyond the stop-band. We compare our experimental results with a transfer-matrix calculation of the transmission for s- and p-polarization and explain the different positions of the polariton branches, the stop-band width, and the high- and low energy transmission maxima of the MC. Time-resolved PL experiments show an increase in the decay lifetime of the exciton-like mode when it is positioned far from the cavity mode. Close to resonance, the lower polariton branch decays with the natural lifetime of the J-aggregates.  相似文献   

5.
Within the framework of a developed model of a medium consisting of molecular J aggregates and placed in an external resonant light field, it is shown how exciton self-localization and the dependence of the dipole moment components on molecule deformation affect optical bistability. Deformation of the molecules substantially facilitates the observation of a bistable dependence of the state of the medium and of the transmitted field amplitude on the incident field amplitude. The evolution of the system to a quasi-stationary, nonground state after the passage of an electromagnetic field pulse under the conditions of self-localization of excitons is studied.  相似文献   

6.
The transformation of the electronic excitation energy in a plane-layered nanostructure with two-dimensional J-aggregates of a cyanine dye has been studied theoretically. The dependences of the plasmon–exciton interaction energy on the system parameters have been determined. In the case of small values of the Rabi frequency, the rates of nonradiative energy transfer from surface plasmon–polaritons of the metal substrate to molecular excitons of J-aggregates have been calculated in terms of the perturbation theory. The dispersion laws for hybrid plasmon–exciton states have been determined, and it has been shown that the Rabi splitting can range up to 100 meV.  相似文献   

7.
The plasmonic nanocavity is an excellent platform for the study of light matter interaction within a sub-diffraction volume under ambient conditions.We design a structure of plasmonic tweezers,which can trap molecular Jaggregates and also serve as a plasmonic cavity with which to investigate strong light matter interaction.The optical response of the cavity is calculated via finite-difference time-domain methods,and the optical force is evaluated based on the Maxwell stress tensor method.With the help of the coupled oscillator model and virtual exciton theory,we investigate the strong coupling progress at the lower level of excitons,finding that a Rabi splitting of 230 meV can be obtained in a single exciton system.We further analyze the relationship between optical force and model volume in the coupling system.The proposed method offers a way to locate molecular J-aggregates in plasmonic tweezers for investigating optical force performance and strong light matter interaction.  相似文献   

8.
It was found in our previous work (T. Y. Ogul'chansky et al. (2001) Spectrochimica Acta Part A 57, 2705–2715) that the carbocyanine dye Cyan iPr forms J-aggregates in the groove of poly(dA)-poly(dT). In the present paper we study in detail the spectral properties and energy levels structure of the Cyan iPr J-aggregates by means of absorption and fluorescence spectroscopy and polarization measurements. The energy structure of an aggregate consists of at least two exciton zones, and dipole moments of the absorption transitions to these zones are oriented at an angle of about 90° one to another. It was supposed that the transition moment of the lower zone is parallel to the polynucleotide axis and the moment of the upper zone is perpendicular. The fluorescent transitions are possible only from the lower exciton zone, while the excitations of higher zone undergo nonradiative transitions to the lower one.  相似文献   

9.
Optical spectroscopy experiments were used to study the features of cyanine dye 3,3′-dimethyl-9-(2-thienyl)-thiacarbocyanine iodide (L-21) aggregation in binary solutions DMF:Tris–HCl buffer (pH = 8) containing nucleic acids (DNA or RNA). The appearance of absorption and luminescence bands associated with J-aggregates and dimers that are formed within the minor groove of DNA has been observed. The model of L-21 J-aggregate structure is proposed. It has been found that dimers are the building blocks of L-21 J-aggregates. Disorientation in dimers caused by the minor groove curvature is reason of observation of Davydov splitting in absorption spectrum of L-21 J-aggregates. In the solution containing DNA the absorption and luminescence bands of L-21 J-aggregates exhibit the specific properties that allows the dye L-21 to be used as a fluorescent probe for DNA detection.  相似文献   

10.
The pump-probe method of studying of the optical properties of a semiconductor in the exciton region of a spectrum is considered theoretically taking into account the exciton–photon and elastic exciton–exciton interactions. It is shown that the concentration of excitons, and the susceptibility of the medium are mainly determined by the detuning from the exciton resonance and the magnitude of the pump field. The values of the parameters corresponding to the observed parametric resonance are obtained and the dynamic analysis of the found solutions is carried out.  相似文献   

11.
The nonlocal dipole–dipole interaction is studied between excitations in chromophores forming a bunch or a tube of J-aggregates and closely spaced quantum dots (QDs). Equations describing the evolution of exciton pulses in a quasi-one-dimensional medium are derived taking into account the interaction with the transition resonant to nanoparticles. It is shown that the efficient controllable resonance energy transfer can occur in the system between QDs and an exciton pulse. The efficiency of this process significantly increases if the bunch of aggregates is deformed to bend nanoparticles round. It is shown that the interaction of permanent dipole moments of QDs and chromophores leads to the formation of a potential barrier or a well. It is found that the combined influence of these factors can be used to efficiently control the dynamics of pulses in aggregates.  相似文献   

12.
We report the dynamical properties of the exciton orientation in GaAs thin films using the orientational grating (OG) technique. From the results of excitation-power dependence of OG signal, we confirmed that the OG signal comes from the optical nonlinearity of weakly confined excitons. In addition, the OG-decay time decreases with an increase of excitation power due to exciton–exciton interaction, and the shortest decay time is below 1 ps. Our results may imply the potential application of optical nonlinearity of weakly confined exciton to ultrafast switching devices operating at 1 Tbit/s.  相似文献   

13.
The energy relaxation kinetics and the structure of the J-aggregates of water-soluble porphyrin 5,10,15,20-tetrasulphonatophenyl porphine (TPPS4) were investigated in aqueous medium by means of time-resolved fluorescence spectroscopy and confocal laser-scanning fluorescence microscopy. The excitation of the J-aggregates, at excitation intensities higher than ∼1015 photons/cm2 per pulse, results in a remarkable decrease of the fluorescence quantum yield and in the appearance of an additional, non-exponential energy relaxation channel with a decay constant that depends on the excitation intensity. This relaxation mechanism was attributed to the exciton single-singlet annihilation. The exciton lifetime in the absence of the annihilation was calculated to be ∼150 ps. Using exciton annihilation theory, the exciton migration within the J-aggregates could be characterized by determining the exciton diffusion constant (1.8±0.9)  10−3 cm2/s and the hopping time (1.2±0.6) ps. Using the experimental data, the size of the J-aggregate could be evaluated and was seen to yield at least 20 TPPS4 molecules per aggregate. It was shown by means of confocal fluorescence laser scanning microscopy that TPPS4 does self-associate in polyvinyl alcohol (PVA) at acidic pH forming molecular macro-assemblies on a scale of ∼1 μm in PVA matrices.  相似文献   

14.
Light absorption in the region of exciton resonance of GaSe crystal is studied experimentally at high levels of optical excitation. A picosecond YAG:Nd3+ laser emitting 30-ps light pulses and a dye laser with a pulse width of ~3 ns tunable within the range 594–643 nm were used as light sources. It was found that, at high levels of optical excitation, the exciton absorption line of the GaSe crystal disappeared, which was attributed to increasing exciton density with arising mechanisms of their decay: exciton-exciton interactions and screening of excitons by the free charge-carrier plasma. It is shown that these mechanisms are also responsible for the arising new emission band in the long-wavelength region of the photoluminescence spectrum.  相似文献   

15.
We report the results of our theoretical studies of the optical properties of hybrid nanoparticles consisting of the metal core covered with molecular J-aggregates. We evaluate the cross sections of absorption and scattering of light by such particles on the basis of the extended Mie theory for two concentric spheres with material dielectric functions that take into account the size effect associated with scattering of free electrons from the core/shell interface. We carry out our calculations in a wide range of light wavelengths and geometrical parameters of the composite system for silver and gold core and for a J-aggregate shell composed of different cyanine dyes. The results obtained demonstrate the quite different behavior of the extinction spectra of such particles caused by the different strengths of interaction between the Frenkel exciton and the dipolar or multipolar plasmons. We pay particular attention to the investigation of spectral peak positions associated with the eigenfrequencies of hybrid modes in the system and peak intensities as functions of reduced oscillator strength in the molecular J-band for various relationships between the core radius and shell thickness. This provides an efficient means for the explanation of the main features in the optical properties of metal/J-aggregate nanoparticles and can be used for an effective control of the plasmon–exciton coupling strength in such hybrid complexes.  相似文献   

16.
Multilayers consisting of bilayer alternation of hemicyanine dye and cadmium stearate have been prepared by the Langmuir-Blodgett technique. x-ray diffraction and optical absorption spectra are used to characterize their periodic structures and optical properties. The results show that a well ordered supperlattic is produced and the hemicyanine dye is in non-aggregated formation in the alternating multilayers.  相似文献   

17.
The effect of exciton-polariton resonance on the optical properties of periodic heterostructures with double InGaN quantum wells in a GaN matrix has been studied. It has been found that the light reflection is amplified at the frequency corresponding to the exciton energy when it coincides with the frequency of the Bragg resonance. This effect is observed to be twice as large as that in a similar system of single quantum wells.  相似文献   

18.
We argued against the current spectral assignment for absorption spectrum of monomeric PIC which is widely accepted since the pioneering works of Scheibe and Jelley [G. Scheibe, Angew. Chem. 49 (1936) 563; E.E. Jelly, Nature 138 (1936) 1009]. A new spectrum is presented along with its conceptual basis. The hypothesized spectrum attributes the previous 0–0 (≈525 nm) and 0–1 (≈490 nm) assignments, respectively, to intermediates acting as the precursor of J-aggregates and to the 0–0 transition of monomeric PIC and brings the spectrum in accord with the seemingly universal spectral fingerprint of cyanines. The hypothesis is used to analyze and interpret the temperature dependence of the UV–vis absorption of PIC aggregates in saline aqueous solution by incorporating the J-band simulations within frenkel exciton formalism. Its implications for aggregate formation kinetics are given on the basis of current spectroscopic evidence. The hypothesis readily answers several long-standing questions: Why compared to many other cyanines at least an order of magnitude higher dye concentration is needed to form J-aggregates of PIC? Why are there no precursors, since aggregation is expected to be a consecutive process? A large number of observations on steady-state and time-resolved spectral properties, and aggregation kinetics in solution/thin films are likely to find reasonable explanations within this hypothesis.  相似文献   

19.
The band mixing effect on the electronic and optical properties of semiconductor superlattices is studied within the framework of the empirical tight-binding model. It is found that the superlattice periodic potentials mix the bulk heavy hole, light hole and spin-orbit-split bands in the valence band states. As a consequence, the optical matrix elements associated with various valence-to-conduction subband transitions are very sensitive to the variation of the wavevector in directions parallel to the interface ( t). We find that band mixing in conjunction with the exciton effect can account for the Δn≠0 forbidden transitions observed in several recent experiments.  相似文献   

20.
In this article, the fundamental physics of multi-exciton states in semiconductor nano-crystals is reviewed focusing on the mesoscopic enhancement of the excitonic radiative decay rate and the excitonic optical nonlinearity and the mechanism of their saturation with increase of the nanocrystal size. In the case of the radiative decay rate the thermal excitation of excited exciton states having small oscillator strength within the homogeneous linewidth of the exciton ground state is essential in determining the saturation behavior. The weakly correlated exciton pair states are found to cause a cancellation effect in the third-order nonlinear optical susceptibility at the exciton resonance, providing the first consistent understanding of the experimentally observed saturation of the mesoscopic enhancement of the excitonic optical nonlinearity. The presence of the weakly correlated exciton pair states is confirmed convincingly from the good correspondence between theory and experiments on the induced absorption spectra from the exciton state in CuCl nanocrystals. Furthermore, ultrafast relaxation processes of biexcitons are discussed in conjunction with the observed very fast rise of the biexciton gain in nanocrystals. In prospect of future progress in research, the theoretical formulation to calculate the triexciton states as one of the multi-exciton states beyond the biexciton is presented for the first time including the electron-hole exchange interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号