首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The higher-order stress work-conjugate to slip gradient in single crystals at small strains is derived based on the self-energy of geometrically necessary dislocations (GNDs). It is shown that this higher-order stress changes stepwise as a function of in-plane slip gradient and therefore significantly influences the onset of initial yielding in polycrystals. The higher-order stress based on the self-energy of GNDs is then incorporated into the strain gradient plasticity theory of Gurtin [2002. A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5-32] and applied to single-slip-oriented 2D and 3D model crystal grains of size D. It is thus found that the self-energy of GNDs gives a D-1-dependent term for the averaged resolved shear stress in such a model grain under yielding. Using published experimental data for several polycrystalline metals, it is demonstrated that the D-1-dependent term successfully explains the grain size dependence of initial yield stress and the dislocation cell size dependence of flow stress in the submicron to several-micron range of grain and cell sizes.  相似文献   

2.
3.
In a recent publication, we derived the mesoscale continuum theory of plasticity for multiple-slip systems of parallel edge dislocations, motivated by the statistical-based nonlocal continuum crystal plasticity theory for single-glide given by Yefimov et al. [2004b. A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity simulations. J. Mech. Phys. Solids 52, 279-300]. In this dislocation field theory (DiFT) the transport equations for both the total dislocation density and geometrically necessary dislocation (GND) density on each slip system were obtained from the Peach-Koehler interactions through both single and pair dislocation correlations. The effect of pair correlation interactions manifested itself in the form of a back stress in addition to the external shear and the self-consistent internal stress. We here present the study of size effects in single crystalline thin films with symmetric double slip using the novel continuum theory. Two boundary value problems are analyzed: (1) stress relaxation in thin films on substrates subject to thermal loading, and (2) simple shear in constrained films. In these problems, earlier discrete dislocation simulations had shown that size effects are born out of layers of dislocations developing near constrained interfaces. These boundary layers depend on slip orientations and applied loading but are insensitive to the film thickness. We investigate the stress response to changes in controlled parameters in both problems. Comparisons with previous discrete dislocation simulations are discussed.  相似文献   

4.
We compare experimental measurements of inhomogeneous plastic deformation in a Ni bicrystal with crystal plasticity simulations. Polychromatic X-ray microdiffraction, orientation imaging microscopy and scanning electron microscopy, were used to characterize the geometrically necessary dislocation distribution of the bicrystal after uniaxial tensile deformation. Changes in the local crystallographic orientations within the sample reflect its plastic response during the tensile test. Elastic strain in both grains increases near the grain boundary. Finite element simulations were used to understand the influence of initial grain orientation and structural inhomogeneities on the geometrically necessary dislocations arrangement and distribution and to understand the underlying materials physics.  相似文献   

5.
This paper focuses on the unification of two frequently used and apparently different strain gradient crystal plasticity frameworks: (i) the physically motivated strain gradient crystal plasticity models proposed by Evers et al. [2004a. Non-local crystal plasticity model with intrinsic SSD and GND effects. Journal of the Mechanics and Physics of Solids 52, 2379-2401; 2004b. Scale dependent crystal plasticity framework with dislocation density and grain boundary effects. International Journal of Solids and Structures 41, 5209-5230] and Bayley et al. [2006. A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity. International Journal of Solids and Structure 43, 7268-7286; 2007. A three dimensional dislocation field crystal plasticity approach applied to miniaturized structures. Philosophical Magazine 87, 1361-1378] (here referred to as Evers-Bayley type models), where a physical back stress plays the most important role and which are further extended here to deal with truly large deformations, and (ii) the thermodynamically consistent strain gradient crystal plasticity model of Gurtin (2002-2008) (here referred to as the Gurtin type model), where the energetic part of a higher order micro-stress is derived from a non-standard free energy function. The energetic micro-stress vectors for the Gurtin type models are extracted from the definition of the back stresses of the improved Evers-Bayley type models. The possible defect energy forms that yield the derived physically based micro-stresses are discussed. The duality of both type of formulations is shown further by a comparison of the micro-boundary conditions. As a result, this paper provides a direct physical interpretation of the different terms present in Gurtin's model.  相似文献   

6.
We consider finite plasticity based on the decomposition F=FeFp of the deformation gradient F into elastic and plastic distortions Fe and Fp. Within this framework the macroscopic Burgers vector may be characterized by the tensor field . We derive a natural convected rate for G associated with evolution of Fp and as our main result show that, for a single-crystal,
temporal changes in G—as characterized by its convected time derivative—may be decomposed into temporal changes in distributions of screw and edge dislocations on the individual slip systems.
We discuss defect energies dependent on the densities of these distributions and show that corresponding thermodynamic forces are macroscopic counterparts of classical Peach-Koehler forces.  相似文献   

7.
In this work, the strain gradient formulation is used within the context of the thermodynamic principle, internal state variables, and thermodynamic and dissipation potentials. These in turn provide balance of momentum, boundary conditions, yield condition and flow rule, and free energy and dissipative energies. This new formulation contributes to the following important related issues: (i) the effects of interface energy that are incorporated into the formulation to address various boundary conditions, strengthening and formation of the boundary layers, (ii) nonlocal temperature effects that are crucial, for instance, for simulating the behavior of high speed machining for metallic materials using the strain gradient plasticity models, (iii) a new form of the nonlocal flow rule, (iv) physical bases of the length scale parameter and its identification using nano-indentation experiments and (v) a wide range of applications of the theory. Applications to thin films on thick substrates for various loading conditions and torsion of thin wires are investigated here along with the appropriate length scale effect on the behavior of these structures. Numerical issues of the theory are discussed and results are obtained using Matlab and Mathematica for the nonlinear ordinary differential equations (NODE) which constitute the boundary value problem.This study reveals that the micro-stress term has an important effect on the development of the boundary layers and hardening of the material at both hard and soft interface boundary conditions in thin films. The interface boundary conditions are described by the interfacial length scale and interfacial strength parameters. These parameters are important to control the size effect and hardening of the material. For more complex geometries the generalized form of the boundary value problem using the nonlocal finite element formulation is required to address the problems involved.  相似文献   

8.
The effect of the material microstructural interfaces increases as the surface-to-volume ratio increases. It is shown in this work that interfacial effects have a profound impact on the scale-dependent yield strength and strain hardening of micro/nano-systems even under uniform stressing. This is achieved by adopting a higher-order gradient-dependent plasticity theory [Abu Al-Rub, R.K., Voyiadjis, G.Z., Bammann, D.J., 2007. A thermodynamic based higher-order gradient theory for size dependent plasticity. Int. J. Solids Struct. 44, 2888–2923] that enforces microscopic boundary conditions at interfaces and free surfaces. Those nonstandard boundary conditions relate a microtraction stress to the interfacial energy at the interface. In addition to the nonlocal yield condition for the material’s bulk, a microscopic yield condition for the interface is presented, which determines the stress at which the interface begins to deform plastically and harden. Hence, two material length scales are incorporated: one for the bulk and the other for the interface. Different expressions for the interfacial energy are investigated. The effect of the interfacial yield strength and interfacial hardening are studied by analytically solving a one-dimensional Hall–Petch-type size effect problem. It is found that when assuming compliant interfaces the interface properties control both the material’s global yield strength and rates of strain hardening such that the interfacial strength controls the global yield strength whereas the interfacial hardening controls both the global yield strength and strain hardening rates. On the other hand, when assuming a stiff interface, the bulk length scale controls both the global yield strength and strain hardening rates. Moreover, it is found that in order to correctly predict the increase in the yield strength with decreasing size, the interfacial length scale should scale the magnitude of both the interfacial yield strength and interfacial hardening.  相似文献   

9.
In the context of single-crystal strain gradient plasticity, we focus on the simple shear of a constrained strip in order to study the effects of the material parameters possibly involved in the modelling. The model consists of a deformation theory suggested and left undeveloped by Bardella [(2007). Some remarks on the strain gradient crystal plasticity modelling, with particular reference to the material length scales involved. Int. J. Plasticity 23, 296–322] in which, for each glide, three dissipative length scales are considered; they enter the model through the definition of an effective slip which brings into the isotropic hardening function the relevant plastic strain gradients, averaged by means of a p-norm. By means of the defect energy (i.e., a function of Nye's dislocation density tensor added to the free energy; see, e.g., Gurtin [2002. A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5–32]), the model further involves an energetic material length scale. The application suggests that two dissipative length scales may be enough to qualitatively describe the size effect of metals at the microscale, and they are chosen in such a way that the higher-order state variables of the model be the dislocation densities. Moreover, we show that, depending on the crystallography, the size effect governed by the defect energy may be different from what expected (based on the findings of [Bardella, L., 2006. A deformation theory of strain gradient crystal plasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 54, 128–160] and [Gurtin et al. 2007. Gradient single-crystal plasticity with free energy dependent on dislocation densities. J. Mech. Phys. Solids 55, 1853–1878]), leading mostly to some strengthening. In order to investigate the model capability, we also exploit a Γ-convergence technique to find closed-form solutions in the “isotropic limit”. Finally, we analytically show that in the “perfect plasticity” case, should the dissipative length scales be set to zero, the presence of the sole energetic length scale may lead, as in standard plasticity, to non-uniqueness of solutions.  相似文献   

10.
This paper is devoted to the introduction of packing and size effects in micromechanical predictions of the overall elastic moduli of particulate composite materials. Whereas micromechanical models derived from the classical ‘point approach’ are known to be unable to model such effects, it is shown that the so-called ‘morphologically representative pattern-based approach’ (MRP-based approach) offers new means of taking some geometrical parameters into account such as the mean distance between nearest-neighbor particles or their size, so as to predict the dependence of the overall moduli on these parameters, at least in a relative way. Moreover, when internal lengths, such as the thickness of interphase shells of coated particles, are introduced, absolute size effects can be predicted as well. Illustrative applications are reported in view of comparisons between such new treatments and the predictions of some classical models which are shown to coincide with the ones derived from MRP-based models in definite limiting cases only.  相似文献   

11.
A method is proposed to estimate the size-dependent yield strength of columnar-grained freestanding thin films. The estimate relies on assuming a distribution of the size of Frank-Read sources, which is then translated into a log-normal distribution of the source strength, depending on film thickness, grain size and theoretical strength of the material, augmented with a single fit parameter. Two-dimensional discrete dislocation plasticity (DDP) simulations are carried out for two sets of Cu films and the fit parameter is determined from independent experiments. Subsequent DDP predictions of the stress-strain curves in comparison with the corresponding experimental data show excellent agreement of initial yield strength and hardening rate for films of varying film thickness and grain size. Having thus demonstrated the power of the proposed strength distribution, it is shown that the mode of this distribution governs the most effective source strength. This is then used to suggest a method to estimate the yield strength of thin films as a function of film thickness and grain size. Simple maps are presented that are in very good agreement with recent experimental results for Cu thin films.  相似文献   

12.
13.
This work used a modified direct shear apparatus, created newly by the authors, to explore effects of the gap between shear box halves and specimen size on the shear resistance of coarse-grained soil. The shear boxes of this apparatus were assembled from a series of steel structures capable of superimposition and nesting. Such characteristics facilitated variation of specimen size in both diameter and height. The new device can also maintain a constant gap during shearing. We performed a series of gap-effect and size-effect tests for two uniformly graded, coarse-grained soil samples. The test results showed that both the gap space and specimen size had significant influences on shear resistance of the coarse-grained soil. Further, analysis of variations in shear strength indices led to a reasonable gap dimension and specimen size of the two soil samples.  相似文献   

14.
This paper explores the mechanisms of the residual stress generation in thin film systems with large lattice mismatch strain, aiming to underpin the key mechanism for the observed variation of residual stress with the film thickness. Thermal mismatch, lattice mismatch and interface misfit dislocations caused by the disparity of the material layers were investigated in detail. The study revealed that the thickness-dependence of the residual stresses found in experiments cannot be elucidated by thermal mismatch, lattice mismatch, or their coupled effect. Instead, the interface misfit dislocations play the key role, leading to the variation of residual stresses in the films of thickness ranging from 100 nm to 500 nm. The agreement between the theoretical analysis and experimental results indicates that the effect of misfit dislocation is far-reaching and that the elastic analysis of dislocation, resolved by the finite element method, is sensible in predicting the residual stress distribution. It was quantitatively confirmed that dislocation density has a significant effect on the overall film stresses, but dislocation distribution has a negligible influence. Since the lattice mismatch strain varies with temperature, it was finally confirmed that the critical dislocation density that leads to the measured residual stress variation with film thickness should be determined from the lattice mismatch strain at the deposition temperature.  相似文献   

15.
Glass beads of varying diameters (d=2,3,4d=2,3,4, and 5 mm) are used to measure the ratio of shear-to-normal stress, or bulk friction coefficient, generated inside an annular shear cell at high shearing rates. The effects of the particle size, the solids concentration, and the shear rate are explored. It is found that (1) for a given particle size, the magnitude of the bulk friction coefficient decreases with increasing solids concentration, (2) for a given solids concentration, the bulk friction coefficient decreases with increasing particle size, and (3) the bulk friction coefficient is independent of the shear rate except for cases with low solids concentration, where it decreases with increasing shear rate. The boundary geometry is found to affect bulk friction only for dilute (low solids concentration) flows involving small particles.  相似文献   

16.
Thin-film technology has been used to measure the heat transfer coefficient and cooling effectiveness over heavily film cooled nozzle guide vanes (NGVs). The measurements were performed in a transonic annular cascade which has a wide operating range and simulates the flow in the gas turbine jet engine. Engine-representative Mach and Reynolds numbers were employed and the upstream free-stream turbulence intensity was 13%. The aerodynamic and thermodynamic characteristics of the coolant flow (momentum flux and density ratio between the coolant and mainstream) have been modelled to represent engine conditions by using a foreign gas mixture of SF6 and Argon. Engine-level values of heat transfer coefficient and cooling effectiveness have been obtained by correcting for the different molecular (thermal) properties of the gases used in the engine-simulated experiments to those which exist in the true engine environment. This paper presents the best combined heat transfer coefficient and effectiveness data currently available for a fully cooled, three-dimensional NGVs at engine conditions.  相似文献   

17.
Owing to its broad potential applications, nanostructured ceria has been subject of intense investigation in the past few decades. Experiments have demonstrated that various material properties of the nanostructured ionic solids including ceria vary with the feature size. Here, we present a theoretical study of the size effects on the composition, defect concentrations and stresses in free-standing nanoparticles of nonstoichiometric ionic solids. To this end, a continuum model is developed which accounts for the highly nonlinear coupling between mechanical, chemical and electrical driving forces, and their effects on the thermodynamic equilibrium of the defect species. It is demonstrated that the model, once applied to the case of ceria, predicts size-dependent defect concentrations and surface stresses. It is further shown that the theoretical predictions of the size effects on the composition and lattice parameter are in good agreement with the experimental observations.  相似文献   

18.
The predominant deformation mode during material failure is shear. In this paper, a crystal plasticity scheme for explicit time integration codes is developed based on a forward Euler algorithm. The numerical model is incorporated in the UMAT subroutine for implementing rate-dependent crystal plasticity model in LS-DYNA/Explicit. The sheet is modeled as a face centered cubic (FCC) polycrystalline aggregate, and a finite element analysis based on rate-dependent crystal plasticity is implemented to analyze the effects of three different strain paths consisting predominantly of shear. Finite element meshes containing texture data are created with solid elements. The material model can incorporate information obtained from electron backscatter diffraction (EBSD) and apply crystal orientation to each element as well as account for texture evolution. Single elements or multiple elements are used to represent each grain within a microstructure. The three dimensional (3D) polycrystalline microstructure of the aluminum alloy AA5754 is modeled and subjected to three different strain rates for each strain path. The effects of strain paths, strain rates and thermal softening on the formation of localized deformation are investigated. Simulations show that strain path is the most dominant factor in localized deformation and texture evolution.  相似文献   

19.
20.
The aim of the present paper is to study flow and heat transfer characteristics of a viscous Casson thin film flow over an unsteady stretching sheet subject to variable heat flux in the presence of slip velocity condition and viscous dissipation. The governing equations are partial differential equations. They are reduced to a set of highly nonlinear ordinary differential equations by suitable similarity transformations. The resulting similarity equations are solved numerically with a shooting method. Comparisons with previous works are made, and the results are found to be in excellent agreement. In the present work, the effects of the unsteadiness parameter, the Casson parameter, the Eckert number, the slip velocity parameter, and the Prandtl number on flow and heat transfer characteristics are discussed. Also, the local skin-friction coefficient and the local Nusselt number at the stretching sheet are computed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号