首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new strategy for preparing antimicrobial surfaces by a simple dip-coating procedure is reported. Amphiphilic polycations with different mole ratios of monomers containing dodecyl quaternary ammonium, methoxyethyl, and catechol groups were synthesized by free-radical polymerization. The polymer coatings were prepared by immersing glass slides into a polymer solution and subsequent drying and heating. The quaternary ammonium side chains endow the coatings with potent antibacterial activity, the methoxyethyl side chains enable tuning the hydrophobic/hydrophilic balance, and the catachol groups promote immobilization of the polymers into films. The polymer-coated surfaces displayed bactericidal activity against Escherichia coli and Staphylococcus aureus in a dynamic contact assay and prevented the accumulation of viable E. coli, S. aureus, and Acinetobacter baumannii for up to 96 h. Atomic force microscopy (AFM) images of coating surfaces indicated that the surfaces exhibit virtually the same smoothness for all polymers except the most hydrophobic. The hydrophobic polymer without methoxyethyl side chains showed clear structuring into polymer domains, causing high surface roughness. Sum-frequency generation (SFG) vibrational spectroscopy characterization of the surface structures demonstrated that the dodecyl chains are predominantly localized at the surface-air interface of the coatings. SFG also showed that the phenyl groups of the catechols are oriented on the substrate surface. These results support our hypothesis that the adhesive or cross-linking functionality of catechol groups discourages polymer leaching, allowing the tuning of the amphiphilic balance by incorporating hydrophilic components into the polymer chains to gain potent biocidal activity.  相似文献   

2.
Extremely lightweight plates made of an engineered PMMA-based composite material loaded with hollow glass micro-sized spheres, nano-sized silica particles and aluminum hydroxide prismatic micro-flakes were realized by cast molding. Their interesting bulk mechanical properties were combined to properly tailored surface topography compatible with the achievement of a superhydrophobic behavior after the deposition of a specifically designed hydrophobic coating. With this aim, we synthesized two different species of fluoromethacrylic polymers functionalized with methoxysilane anchoring groups to be covalently grafted onto the surface protruding inorganic fillers. By modulating the feed composition of the reacting monomers, it was possible to combine the hydrophobic character of the polymer with an high adhesion strength to the substrate and hence to maximize both the water contact angle (up to 157°) and the durability of the easy-to-clean effect (up to 2000 h long outdoor exposure).  相似文献   

3.
Marine organisms such as plants, algae or small animals can adhere to surfaces of materials that are submerged in ocean. The accumulation of these organisms on surfaces is a marine biofouling process that has considerable adverse effects. Marine biofouling on ship hulls can cause severe fuel consumption increase. Investigations on antifouling polymers are therefore becoming important research topics for marine vessel operations. Antifouling polymers can be applied as coating layers on the ship hull, protecting it against the settlement and growth of sea organisms. Polyethylene glycol (PEG) is a hydrophilic polymer that can effectively resist the accumulation of marine organisms. PEG-based antifouling coatings have therefore been extensively researched and developed. However, the inferior stability of PEG makes it subject to degradation, rendering it ineffective for long-term services. Zwitterionic polymers have also emerged as promising antifouling materials in recent years. These polymers consist of both positively charged and negatively charged functional groups. Various zwitterionic polymers have been demonstrated to exhibit exceptional antifouling properties. Previously, surface characterizations of zwitterionic polymers have revealed that strong surface hydration is critical for their antifouling properties. In addition to these hydrophilic polymers, amphiphilic materials have also been developed as potential antifouling coatings. Both hydrophobic and hydrophilic functional groups are incorporated into the backbones or sidechains of these polymers. It has been demonstrated that the antifouling performance can be enhanced by precisely controlling the sequence of the hydrophobic-hydrophilic functionalities. Since biofouling generally occurs at the outer surface of the coatings, the antifouling properties of these coatings are closely related to their surface characteristics in water. Therefore, understanding of the surface molecular structures of antifouling materials is imperative for their future developments. In this review, we will summarize our recent advancements of antifouling material surface analysis using sum frequency generation (SFG) vibrational spectroscopy. SFG is a surface-sensitive technique which can provide molecular information of water and polymer structures at interfaces in situ in real time. The antifouling polymers we will review include zwitterionic polymer brushes, mixed charged polymers, and amphiphilic polypeptoids. Interfacial hydration studies of these polymers by SFG will be presented. The salt effect on antifouling polymer surface hydration will also be discussed. In addition, the interactions between antifouling materials and protein molecules as well as algae will be reviewed. The above research clearly established strong correlations between strong surface hydration and good antifouling properties. It also demonstrated that SFG is a powerful technique to provide molecular level understanding of polymer antifouling mechanisms.  相似文献   

4.
In this paper, we demonstrate the first use of a catecholic initiator for surface-initiated polymerization (SIP) from metal surfaces to create antifouling polymer coatings. A new bifunctional initiator inspired by mussel adhesive proteins was synthesized, which strongly adsorbs to Ti and 316L stainless steel (SS) substrates, providing an anchor for surface immobilization of grafted polymers. Surface-initiated atom transfer radical polymerization (SI-ATRP) was performed through the adsorbed biomimetic initiator to polymerize methyl methacrylate macromonomers with oligo(ethylene glycol) (OEG) side chains. X-ray photoelectron spectroscopy, surface FT-IR, and contact angle analysis confirmed the sequential grafting of initiator and polymer, and ellipsometry indicated the formation of polymer coatings of up to 100 nm thickness. Cell adhesion experiments performed with 3T3-Swiss albino fibroblasts showed substantially reduced cell adhesion onto polymer grafted Ti and 316L SS substrates as compared to the unmodified metals. Moreover, micropatterning of grafted polymer coatings on Ti surfaces was demonstrated by combining SI-ATRP and molecular assembly patterning by lift-off (MAPL), creating cell-adhesive and cell-resistant regions for potential use as cell arrays. Due to the ability of catechols to bind to a large variety of inorganic surfaces, this biomimetic anchoring strategy is expected to be a highly versatile tool for polymer thin film surface modification for biomedical and other applications.  相似文献   

5.
Acrylic polymers, including poly(methyl methacrylate), poly(2,2,2-trifluoroethyl methacrylate), poly( N,N'-dimethyaminoethyl methacrylate), and poly(2-hydroxyethyl methacrylate) were grafted from flat nickel and copper surfaces through surface-initiated atom transfer radical polymerization (ATRP). For the nickel system, there was a linear relationship between polymer layer thickness and monomer conversion or molecular weight of "free" polymers. The thickness of the polymer brush films was greater than 80 nm after 6 h of reaction time. The grafting density was estimated to be 0.40 chains/nm2. The "living" chain ends of grafted polymers were still active and initiated the growth of a second block of polymer. Block copolymer brushes with different block sequences were successfully prepared. The experimental surface chemical compositions as measured by X-ray photoelectron spectroscopy agreed very well with their theoretical values. Water contact angle measurements further confirmed the successful grafting of polymers from nickel and copper surfaces. The surface morphologies of all samples were studied by atomic force microscopy. This study provided a novel approach to prepare stable functional polymer coatings on reactive metal surfaces.  相似文献   

6.
New peptidomimetic polymers for antifouling surfaces   总被引:2,自引:0,他引:2  
Exposure of therapeutic and diagnostic medical devices to biological fluids is often accompanied by interfacial adsorption of proteins, cells, and microorganisms. Biofouling of surfaces can lead to compromised device performance or increased cost and in some cases may be life-threatening to the patient. Although numerous antifouling polymer coatings have enjoyed short-term success in preventing protein and cell adsorption on surfaces, none have proven ideal for conferring long-term biofouling resistance. Here we describe a new biomimetic antifouling N-substituted glycine polymer (peptoid) containing a C-terminal peptide anchor derived from residues found in mussel adhesive proteins for robust attachment of the polymer onto surfaces. The methoxyethyl side chain of the peptoid portion of the polymer was chosen for its chemical resemblance to the repeat unit of the known antifouling polymer poly(ethylene glycol) (PEG), whereas the composition of the 5-mer anchoring peptide was chosen to directly mimic the DOPA- and Lys-rich sequence of a known mussel adhesive protein. Surfaces modified with this biomimetic peptide-peptoid conjugate exhibited dramatic reduction of serum protein adsorption and resistance to mammalian cell attachment for over 5 months in an in vitro assay. These new synthetic peptide based antifouling polymers may provide long-term control of surface biofouling in the physiologic, marine, and industrial environments.  相似文献   

7.
We have developed a two‐stage process to graft poly(ethylene oxide) (PEO) onto a silica surface. In the first stage the adsorption of an anchor reactive polymer to the surface is carried out, and in the second stage the grafting of compatibilizing macromolecular tails is performed via the reactions of functional groups of the polymer anchored. Random copolymers of styrene and maleic anhydride (SM) were chosen as reactive anchoring polymers. The kinetics of adsorption of SM from dilute solutions onto the silica surface as well as the grafting of PEO to SM macromolecules adsorbed was experimentally investigated by null ellipsometry. A model of the structure at the surface is proposed.  相似文献   

8.
Manipulation and engineering of the surfaces has a key role in improving the materials properties. Anchoring of thin hydrogels on the materials surface is one of the recently developed methods to achieve surfaces with high potential applications. Layer‐by‐layer (LBL) has been used widely as a strong strategy for immobilization of thin hydrogel films on the surface of various organic/inorganic substrates. Electrostatic LBL and covalent LBL are two main strategies used in this regard. In electrostatic LBL, negatively and positively hydrophilic polymers are sequentially assembled to create a multilayer hydrogel which subsequent covalent crosslinking of multilayers improved the stability of the inserted layers. On the other hand, covalent LBL requires hydrophilic polymers bearing reactive telechelic groups. These reactive polymers are prepared by various polymerization techniques or by post‐functionalization of biopolymers. The principles of hydrogel anchoring have described along with representative examples. Besides, the potential applications of the modified surfaces in specific cases have been addressed and overviewed.  相似文献   

9.
Plasma polymer coatings fabricated from Melaleuca alternifolia essential oil and its derivatives have been previously shown to reduce the extent of microbial adhesion on titanium, polymers, and other implantable materials used in dentistry. Previous studies have shown these coatings to maintain their performance under standard operating conditions; however, when used in e.g., a dental implant, these coatings may inadvertently become subject to in situ cleaning treatments, such as those using an atmospheric pressure plasma jet, a promising tool for the effective in situ removal of biofilms from tissues and implant surfaces. Here, we investigated the effect of such an exposure on the antimicrobial performance of the Melaleuca alternifolia polymer coating. It was found that direct exposure of the polymer coating surface to the jet for periods less than 60 s was sufficient to induce changes in its surface chemistry and topography, affecting its ability to retard subsequent microbial attachment. The exact effect of the jet exposure depended on the chemistry of the polymer coating, the length of plasma treatment, cell type, and incubation conditions. The change in the antimicrobial activity for polymer coatings fabricated at powers of 20–30 W was not statistically significant due to their limited baseline bioactivity. Interestingly, the bioactivity of polymer coatings fabricated at 10 and 15 W against Staphylococcus aureus cells was temporarily improved after the treatment, which could be attributed to the generation of loosely attached bioactive fragments on the treated surface, resulting in an increase in the dose of the bioactive agents being eluted by the surface. Attachment and proliferation of Pseudomonas aeruginosa cells and mixed cultures were less affected by changes in the bioactivity profile of the surface. The sensitivity of the cells to the change imparted by the jet treatment was also found to be dependent on their origin culture, with mature biofilm-derived P. aeruginosa bacterial cells showing a greater ability to colonize the surface when compared to its planktonic broth-grown counterpart. The presence of plasma-generated reactive oxygen and nitrogen species in the culture media was also found to enhance the bioactivity of polymer coatings fabricated at power levels of 10 and 15 W, due to a synergistic effect arising from simultaneous exposure of cells to reactive oxygen and nitrogen species (RONS) and eluted bioactive fragments. These results suggest that it is important to consider the possible implications of inadvertent changes in the properties and performance of plasma polymer coatings as a result of exposure to in situ decontamination, to both prevent suboptimal performance and to exploit possible synergies that may arise for some polymer coating-surface treatment combinations.  相似文献   

10.
《Liquid crystals》1997,22(6):685-692
By comparing the anchoring behaviour of (end-on) side chain polymer liquid crystals with that of the corresponding low molecular mass liquid crystals, we have studied the effect of the backbone on the anchoring of side chain polymer liquid crystals. We can distinguish two different effects: the loss of rotational freedom of the side groups and the interaction of the polymer chain with the surface. In the case of free surfaces, we can formulate a general rule stating that compounds with side groups ending with an aliphatic chain (at least four carbon atoms long) exhibit a homeotropic anchoring, and compounds with side groups ending with a polar group exhibit a planar anchoring.  相似文献   

11.
Reactive blends prepared from methoxysilane terminated silicone polymers and silylated soybean oil are described and characterized. Although simple mixing of soy and silicones results in gross phase separation, homogeneous polymeric products are obtained by introducing reactive sites. These products can be used as protective coatings, additives to adhesives and new sealants. Exposure of the mixtures to moisture leads to hydrolysis of the methoxysilanes and subsequent condensation of the resulting silanols that yields stable siloxane linkages between the two immiscible phases. FTIR, TGA, and swell‐gel analyses indicate effective formation of these siloxane crosslinks. Reactive blends containing less than 20% silylated oil appeared completely transparent but increasing the soy content decreased the optical transparency. SEM micrographs reveal the silicone polymer as the continuous phase with individual spherical silylated soy oil particles distributed in it. The properties of these reactive blends vary from high elongation elastomers to high modulus resins depending on the composition. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3086–3093  相似文献   

12.
The ability to produce robust and functional cross-linked materials from soluble and processable organic polymers is dependent upon facile chemistries for both reinforcing the structure through cross-linking and for subsequent decoration with active functional groups. Generally, covalent cross-linking of polymeric assemblies is brought about by the application of heat or light to generate highly reactive groups from stable precursors placed along the chains that undergo coupling or grafting reactions. Typically, these strategies suffer from a general lack of control of the cross-linking chemistry as well as the fleeting nature of the reactive species that precludes secondary chemistry. We have addressed both of these issues using orthogonal chemistries to effect both cross-linking and subsequent functionalization of polymer films by mild heating, which results in exacting control of the cross-link density as well as the density of the residual stable functional groups available for subsequent, stepwise functionalization. This methodology is exploited to develop a strategy for the independent and orthogonal triple-functionalization of cross-linked polymer thin-films through microcontact printing.  相似文献   

13.
The preparation and interfacial properties of a new type of tethered, thin-film lubricant coating are presented. These coatings are composed of three components: a dense self-assembled monolayer (SAM) underlayer that presents reactive vinyl groups at its surface; a cross-linked polydimethylsiloxane (PDMS) overlayer that is covalently tethered to the SAM; and free, mobile linear PDMS chains dispersed in the network. We investigate the influence of the molecular weight (Ms) and concentration of the free PDMS chains on the structure and equilibrium swelling properties of the cross-linked films. Using a bead-probe lateral force microscopy measurement technique, we also quantify the interfacial friction and adhesion characteristics of surfaces functionalized with these coatings. We find that both the volume fraction and the molecular weight of free PDMS molecules in the coatings influence their interfacial friction and adhesion properties. For example, the addition of short PDMS chains in dry, cross-linked PDMS thin films yields tethered surface coatings with ultralow friction coefficients (mu = 5.2 x 10(-3)). An analysis based on classical lubrication theory suggests that the reduction in friction force produced by free polymer is a consequence of the gradual separation of asperities on opposing surfaces and the consequent substitution of solid-solid friction by viscous drag of the free polymer chains in the network.  相似文献   

14.
A novel strategy for the preparation of thin hydrogel coatings on top of polymer bulk materials was elaborated for the example of poly(ethylene terephthalate) (PET) surfaces layered with poly(vinylpyrrolidone) (PVP). PVP layers were deposited on PET foils or SiO2 surfaces (silicon wafer or glass coverslips) precoated with PET and subsequently cross-linked by electron beam treatment. The obtained films were characterized by ellipsometry, X-ray photoelectron spectroscopy, infrared spectroscopy in attenuated total reflection, atomic force microscopy (AFM), and electrokinetic measurements. Ellipsometric experiments and AFM force-distance measurements showed that the cross-linked layers swell in aqueous solutions by a factor of about 7. Electrokinetic experiments indicated a strong hydrodynamic shielding of the charge of the underlying PET layer by the hydrogel coatings and further proved that the swollen films were stable against shear stress and variation of pH. In conclusion, electron beam cross-linking ofpreadsorbed hydrophilic polymers permits a durable fixation of swellable polymer networks on polymer supports which can be adapted to materials in a wide variety of shapes.  相似文献   

15.
Multivalent polymers, i.e., copolymers with multiple binding sites, have been proposed recently for stabilization of fusogentic liposomes and other liposomal colloids useful for drug delivery. The performance of such polymers critically depends on their molecular architecture, in particular the strength and frequency of surface anchoring sites along the backbone of a highly soluble polymer. In this work, we investigate the adsorption and surface forces due to multivalent polymers based on coarse-grained polymer models. We find that for W-type polymers that form dangling tails when all anchoring segments are attached to a surface, increasing the chain length at fixed polymer composition leads to a stronger repulsive barrier in the polymer-mediated surface forces thereby increasing the ability of the polymer to stabilize colloidal particles. This prediction conforms to an earlier experiment indicating that increasing the number of hydrophobic anchors along poly(ethylene glycol) polymers results in the cooperative behavior for both surface adsorption and steric stabilization. For M-type multivalent polymers that have weakly anchoring sites placed at the ends, however, addition of binding sites at fixed polymer composition could lead to negative cooperativity, i.e., the more binding sites, the less the amount of adsorption or the weaker the ability of surface protection. The theory also predicts that polymers with two anchoring sites (e.g., telechelic copolymers) are most efficient for colloidal stabilization.  相似文献   

16.
We report on a novel approach for controlling nanohydrodynamic properties at the solid-liquid interfaces through the use of stimuli-responding polymer coatings. The end-tethered polymers undergo a phase separation upon external activation. The reversible change in the thickness and polarity of the grafted polymers yields in a dynamic control of the surface-generated, electrokinetic phenomena. Nonactivated, swollen polymers are thicker than the electrical double layer (EDL) and prohibit the development of an EOF even on charged surfaces. On the other hand, activated polymer chains shrink and become thinner than the EDL and allow for the EOF to build up unimpeded. We show here that, for given experimental conditions, the EOF velocity on the shrunken surface is 35 times greater than the one on the nonactivated surface. Furthermore, we reveal that coupling of such surfaces with dense arrays of thermal actuators developed in our laboratory can lead to novel micro- and nanofluidic devices.  相似文献   

17.
Hierarchical biological materials such as bone, sea shells, and marine bioadhesives are providing inspiration for the assembly of synthetic molecules into complex structures. The adhesive system of marine mussels has been the focus of much attention in recent years. Several catechol-containing polymers are being developed to mimic the cross-linking of proteins containing 3,4-dihydroxyphenylalanine (DOPA) used by shellfish for sticking to rocks. Many of these biomimetic polymer systems have been shown to form surface coatings or hydrogels; however, bulk adhesion is demonstrated less often. Developing adhesives requires addressing design issues including finding a good balance between cohesive and adhesive bonding interactions. Despite the growing number of mussel-mimicking polymers, there has been little effort to generate structure-property relations and gain insights on what chemical traits give rise to the best glues. In this report, we examine the simplest of these biomimetic polymers, poly[(3,4-dihydroxystyrene)-co-styrene]. Pendant catechol groups (i.e., 3,4-dihydroxystyrene) are distributed throughout a polystyrene backbone. Several polymer derivatives were prepared, each with a different 3,4-dihyroxystyrene content. Bulk adhesion testing showed where the optimal middle ground of cohesive and adhesive bonding resides. Adhesive performance was benchmarked against commercial glues as well as the genuine material produced by live mussels. In the best case, bonding was similar to that obtained with cyanoacrylate "Krazy Glue". Performance was also examined using low- (e.g., plastics) and high-energy (e.g., metals, wood) surfaces. The adhesive bonding of poly[(3,4-dihydroxystyrene)-co-styrene] may be the strongest of reported mussel protein mimics. These insights should help us to design future biomimetic systems, thereby bringing us closer to development of bone cements, dental composites, and surgical glues.  相似文献   

18.
《Liquid crystals》2000,27(7):883-887
High pretilt angles, polar anchoring energy (out of plane-tilt), and surface ordering in the nematic liquid crystal 4-n-pentyl-4'-cyanobiphenyl (5CB) were investigated on rubbed organic solvent soluble polyimide (PI) surfaces with a helical backbone structure and trifluoromethyl moieties. It was found that the pretilt angle of 5CB is about 15° in the wide rubbing region of rubbed soluble PI surfaces with trifluoromethyl moieties attached to the lateral benzene rings. It is suggested that the microscopic surface structure of the polymer contributes to the LC pretilt angle generation at the surface. Also, the polar anchoring energy of 5CB is dependent on the molecular structure of these unidirectionally rubbed soluble PI surfaces. The polar anchoring strength of 5CB on rubbed soluble PI surfaces is as weak with trifluoromethyl moieties attached to the lateral benzene rings weak as when the trifluoromethyl moieties are attached to the polymer backbone. Finally, the polar anchoring energy of 5CB strongly depends on the surface ordering of rubbed soluble PI surfaces.  相似文献   

19.
Hydrophilic copolymers of methacrylic acid and ethylene glycol dimethacrylate are simply and rapidly prepared as thin films by spin-coating on gold-coated glass slides with a concurrent photo-crosslinking step. Coating techniques were optimized for use on gold surfaces both separately and as part of surface plasmon resonance (SPR) sensor chips. The population of carboxylic acid functional groups as binding sites in the polymer matrix, as reflected in the corresponding hydrophilicity, could be easily adjusted through changes to the stoichiometric ratio of the monomers, allowing for good control of immobilization capacity. The polymers used adhered to the gold surfaces both with and without use of thiol moieties. Coating thickness was measured by ellipsometry and coatings of 30–40 nm thickness were routinely achieved on gold-coated slides. This dimension is dependent on the spin speed and the viscosity of the polymerization mixture applied. The polymers were further characterized by contact angle measurements and infrared spectroscopy before being applied to immobilization of the steroid cortisol in a BIAcore SPR instrument, where binding to a monoclonal antibody was studied and the surface coatings optimized for maximum specific binding capacity. Optimized surfaces could be regenerated and re-used, and have potential applications as immobilization matrices in plasmonic biosensors with a very rapid coating technique.  相似文献   

20.
High pretilt angles, polar anchoring energy (out of plane-tilt), and surface ordering in the nematic liquid crystal 4-n-pentyl-4'-cyanobiphenyl (5CB) were investigated on rubbed organic solvent soluble polyimide (PI) surfaces with a helical backbone structure and trifluoromethyl moieties. It was found that the pretilt angle of 5CB is about 15° in the wide rubbing region of rubbed soluble PI surfaces with trifluoromethyl moieties attached to the lateral benzene rings. It is suggested that the microscopic surface structure of the polymer contributes to the LC pretilt angle generation at the surface. Also, the polar anchoring energy of 5CB is dependent on the molecular structure of these unidirectionally rubbed soluble PI surfaces. The polar anchoring strength of 5CB on rubbed soluble PI surfaces is as weak with trifluoromethyl moieties attached to the lateral benzene rings weak as when the trifluoromethyl moieties are attached to the polymer backbone. Finally, the polar anchoring energy of 5CB strongly depends on the surface ordering of rubbed soluble PI surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号