共查询到20条相似文献,搜索用时 109 毫秒
1.
基于数据拟合和主成分分析的多组分PAHs神经网络定量分析 总被引:1,自引:0,他引:1
多组分多环芳烃(PAHs)荧光光谱的神经网络定量分析在网络训练过程中需要大量训练样本以提高辨识精度,使得基础实验工作量大且耗时耗力。针对这个问题,文章试验性地采用数据拟合代替部分基础实验,将实验得到的14个训练样本增加到27个;并采用主成分分析法简化神经网络结构,将网络的输入节点数从60维降低到3维。在对二组分混合PAHs溶液的辨识结果表明,通过将14个实验样本拟合成27个训练样本来预测3个待测样本的浓度,能够在保持辨识精度的同时减少基础实验工作并简化神经网络结构,回收率达到89.6%~109.0%,达到了预期目的。 相似文献
2.
利用神经网络提高偏最小二乘法的NIR多组分分析精度 总被引:2,自引:2,他引:2
提出了一种神经网络(ANN)和偏最小二乘法(PLS)结合的新的近红外(NIR)多组分分析法。该方法首先把训练样本中待测组分涵盖的浓度区间分成若干个子区间,利用各个子区间的训练样本分别建立PLS校正模型,然后利用ANN对未知样本进行分类,判断其所属的浓度子区间,应用对应子区间上的校正模型计算预测样本的组分浓度。和传统的PLS比较,此方法改善了模型的适应性,显著地提高了预测精度。实验及数据处理结果证明了本方法的有效性。 相似文献
3.
基于遗传算法与线性鉴别的近红外光谱玉米品种鉴别研究 总被引:2,自引:0,他引:2
结合遗传算法与线性签别分析(LDA)提出了一种玉米品种的快速鉴别方法.该方法是一种基于近红外光谱的新方法,通过采集玉米种子(实验共37个种类)的近红外光谱数据,使用遗传算法进行特征光谱波段的选择,使用线性鉴别分析的方法提取光谱特征并分类.结果表明,遗传算法能有效地剔除光谱噪声波段,并提高 LDA 的泛化能力.同时,为简化运算,剔除了大量冗余数据,结合遗传算法选择的特征谱区,使参与鉴别的数据维数从2 075降到了233.对测试集1的300个样本的平均正确识别率与平均正确拒识率均达到99.30%,其中73.33%的玉米品种的正确识别率达到了100%;对测试集2(均为未参加训练品种的样本)的175个样本的平均正确拒识率达到99.65%.与常用的 PCA 等方法相比,运算时间更短,正确率更高. 相似文献
4.
有监督主成分回归法在近红外光谱定量分析中的应用研究 总被引:5,自引:0,他引:5
介绍了运用有监督主成分回归法建立近红外光谱定量分析模型的原理和方法.利用该方法先进行近红外光谱定量分析建模的波长信息选择,达到降低光谱数据维数的目的,然后建立数学模型,并用其分析预测集样品.文中以66个小麦样品为实验材料,随机选择其中40个样品建立小麦样品中蛋白质含量的近红外光谱定量分析模型,首先优选出4个波长点:4 632,4 636,5 994,5 997 cm-1,利用这4个波长点处光谱信息建立主成分回归模型预测26个样品的蛋白质含量,其结果与凯氏定氮法分析结果的相关系数为0.991,平均相对误差为1.5%.该方法从大量光谱数据中筛选出最重要的部分波长信息,实现了"少而精"的波长点选择,对建立抗共线性信息干扰的光谱定量分析模型,同时对指导专用近红外分析仪器设计中波长点的选择等方面都有一定的意义. 相似文献
5.
潜在语义分析在信息检索领域应用较多,但在近红外光谱领域应用较少.利用近红外漫反射光谱技术,结合潜在语义分析(LSA)和主成分分析(PCA),比较了不同预处理方法、不同奇异值和主成分个数对所建模型的影响,最后确定的模型校正集误判数分别为4和3.用建立的校正模型对验证集进行验证,总的识别率分别达到了96.00%和96.50%.对于功效较近、难以聚类的滋补中药,潜在语义分析是一种新的有效的方法. 相似文献
6.
不同品种茶叶因其所含的有机化学成分不同,其效果也会有差别。所以,寻找出一种能准确迅速的鉴别茶叶品种的技术方法是非常重要的。近红外光谱(NIR)分析是一种无损检测技术,能很好的鉴别茶叶品种。使用NIR光谱仪采集茶叶的NIR数据。为了对包含噪声信号的茶叶近红外光谱进行准确鉴别,提出了一种模糊线性判别QR分析的新方法,可以对茶叶近红外光谱进行准确分类。通过使用模糊线性判别分析(FLDA)将由主成分分析(PCA)压缩的茶叶近红外光谱数据进行降维,由模糊线性判别分析得出的特征向量构建鉴别向量矩阵,对鉴别向量矩阵进行矩阵的QR分解,得到新的鉴别向量矩阵。经过模糊线性判别QR分析后使用K近邻算法进行分类,具有准确率高等优点。以岳西翠兰、六安瓜片、施集毛峰和黄山毛峰四种茶叶为研究样本,每类65个,茶叶样本总数为260个。采集茶叶近红外光谱数据的仪器为AntarisⅡ型傅里叶近红外光谱仪对光谱数据进行预处理,采用多元散射校正,由于采集到的茶叶光谱数据存在散射干扰。以此得到的近红外光谱数据的维数为1557维,通过主成分分析压缩数据集的维数,使得光谱数据集的维数达到7维。经压缩过后的光谱数据集中的鉴别信息再... 相似文献
7.
近红外光谱结合主成分分析和BP神经网络的转基因大豆无损鉴别研究 总被引:2,自引:0,他引:2
为探究无损鉴别转基因大豆的可行性,利用近红外光谱分析仪对大豆扫描得到反射光谱,应用主成分分析结合BP神经网络方法进行分析鉴别。首先应用主成分分析法,得到包含大豆99.03%的光谱信息的6个主成分,再将其作为BP神经网络的输入,对应的大豆种类作为输出,建立一个三层BP神经网络模型。该模型对于转基因大豆的正确识别率为100%,说明近红外光谱结合主成分分析和BP神经网络的方法能无损快速准确地鉴别转基因大豆。 相似文献
8.
粒子群优化算法在混合气体红外光谱定量分析中的应用 总被引:2,自引:1,他引:2
通过将粒子群优化技术及BP神经网络技术相结合,建立了三种烃烷混合气体的红外光谱定量分析模型。混合气体主要由甲烷、乙烷、丙烷三种组分气体组成,三种组分气体浓度范围分别为0.01%~0.1%。文章首先采用主成分分析技术从红外光谱1 866个数据中提取了5个特征变量作为神经网络的输入,将气体浓度作为网络输出。然后将粒子群优化算法与BP神经网络技术相结合,对网络的隐含层节点数进行了优化选择。再对结构优化后的网络进行训练,建立气体分析模型。分析模型的标准气体验证实验结果表明,采用此方法建立混合气体红外光谱定量分析模型所用时间(大约4 600 s)比单纯采用BP神经网络进行遍历优化建模所用时间(大约24 500 s)降低5倍以上,模型预测精度水平相当,网络结构大致相同,具有一定的实践意义和应用潜力。 相似文献
9.
基于NIR分析和模式识别技术的玉米种子识别系统 总被引:4,自引:0,他引:4
模式识别技术及数据挖掘方法已成为化学计量学的研究热点。近红外(NIR)光谱分析以其快速、简便、非破坏性等优势广泛应用于光谱信号的处理和分析模型的建立。文章基于五种不同的模式识别方法:局部线性嵌入(LLE),小波变换(WT),主成分分析(PCA),偏最小二乘(PLS)和支持向量机(SVM),利用NIR技术建立了玉米种子的模式识别系统,并将其应用于108玉米杂交种和母本178种子的近红外光谱样品。首先利用LLE,WT,PCA,PLS进行消噪或降维,然后运用SVM进行分类识别,而一模支持向量机(1-norm SVM)算法直接进行分类识别。三个不同NIR光谱范围的数值实验显示:PCA+SVM,LLE+SVM,PLS+SVM识别效果甚佳,而WT+SVM和1-norm SVM方法也有较高的分类精度。实验结果表明了本文提出方法的可行性和有效性,为利用近红外光谱和模式识别技术进行种子识别研究提供了理论依据和实用方法。 相似文献
10.
模式识别技术及数据挖掘方法已成为化学计量学的研究热点。近红外(NIR)光谱分析以其快速、简便、非破坏性等优势广泛应用于光谱信号的处理和分析模型的建立。基于五种不同的模式识别方法:局部线性嵌入(LLE),小波变换(WT),主成分分析(PCA),偏最小二乘(PLS)和支持向量机(SVM),利用NIR技术建立了玉米种子的模式识别系统,并将其应用于108玉米杂交种和母本178种子的近红外光谱样品。首先利用LLE,WT,PCA,PLS进行消噪或降维,然后运用SVM进行分类识别,而一模支持向量机(1-normSVM)算法直接进行分类识别。三个不同NIR光谱范围的数值实验显示:PCA+SVM,LLE+SVM和PLS+SVM识别效果甚佳,而WT+SVM和1-norm SVM方法也有较高的分类精度。实验结果表明了本文提出方法的可行性和有效性,为利用近红外光谱和模式识别技术进行种子识别研究提供了理论依据和实用方法。 相似文献
11.
局部建模方法用于烟草样品的近红外光谱定量分析 总被引:1,自引:0,他引:1
采用近红外光谱在主成分空间的距离作为样本相似性的判据,建立了一种用于近红外光谱定量分析的局部建模方法。该方法首先对校正集的光谱进行主成分分析(PCA),然后基于主成分空间中预测样本与校正集样本的距离选择校正子集并建立局部偏最小二乘(PLS)回归模型。对欧氏距离和马氏距离的比较表明,欧氏距离可以更好地表达样本之间的相似性。将所建立的方法用于烟草样品中氯和尼古丁含量的测定,结果表明局部建模方法比常用的全局建模方法具有更好的预测准确性,特别是在低含量成分的预测中具有明显优势。 相似文献
12.
基于主成分分析和神经网络的近红外光谱苹果品种鉴别方法研究 总被引:32,自引:17,他引:32
提出了一种用近红外光谱技术快速鉴别苹果品种的新方法,首先用主成分分析法对苹果品种进行聚类分析并获取苹果的近红外指纹图谱,再结合人工神经网络技术进行品种鉴别。主成分分析表明,主成分1和主成分2的累积可信度已达98%,以主成分1和2对所有建模样本的得分值做出的得分图,对不同种类苹果具有很好的聚类作用。利用主成分分析得到的载荷图可以得到对于苹果品种敏感的特征波段,用特征波段图谱作为神经网络的输入建立三层BP人工神经网络模型。每个品种各25个苹果共75个用来建立神经网络模型,余下的共15个用于预测。对未知的15个样本进行预测,品种识别准确率达到100%。说明文章提出的方法具有很好的分类和鉴别作用,为苹果的品种鉴别提供了一种新方法。 相似文献
13.
基于主成分分析和人工神经网络的激光诱导击穿光谱塑料分类识别方法研究 总被引:4,自引:0,他引:4
研究了人工神经网络在激光诱导击穿光谱(LIBS)塑料分类识别方面的应用。选用七种常见的塑料作为实验样品,获得每种样品的170组LIBS光谱数据,利用主成分分析获得前五个主成分的得分矩阵。用每种塑料样品的130组光谱数据的主成分得分矩阵作为训练集,建立反向传播(BP)人工神经网络模型。将其余40组主成分得分作为测试数据输入训练好的模型进行分类识别,其识别准确度达到97.5%。实验结果表明,通过采用主成分分析与BP人工神经网络相结合的方法,可以很好地进行塑料激光诱导击穿光谱的分类识别,对塑料的回收利用有重要价值。 相似文献
14.
基于PCA-BP神经网络的EDXRF分析测定地质样品中铁、钛元素含量的应用研究 总被引:1,自引:0,他引:1
为实现地质样品中元素含量的准确预测,提出了基于主成分分析(PCA)的改进型BP神经网络模型。采用X荧光光谱法,对新疆西天山地质样品中Fe,Ti,V,Pb和Zn等元素进行测量,将得到的X荧光计数作为输入变量,应用该模型对未知地质样品中Fe和Ti元素进行定量预测。结果表明:主成分分析与改进型BP神经网络模型取得了较好的预测效果,预测结果与化学分析值的相对误差小于3%,为地质样品元素含量预测提供了一种新型有效的方法。 相似文献
15.
基于近红外光谱技术和人工神经网络的玉米品种鉴别方法研究 总被引:8,自引:0,他引:8
提出了一种采用近红外光谱技术结合人工神经网络对玉米品种进行鉴别的方法。在3 800~10 000 cm-1(波长1 000~2 632 nm)范围内采集四种玉米单粒完整籽粒的近红外漫反射光谱,经Savitky-Golay平滑和多重散 射校正预处理后,对数据进行主成分分析,再结合人工神经网络技术进行品种鉴别。主成分分析表明,前8个主成分的累积贡献率达到99.602%。以前8个主成分作为网络输入,品种类型作为输出,建立三层LMBP神经网络模型。每个品种 各取30粒共120个样本用于建模,10粒共40个样本用于预测。模型对建模集120个样本鉴别率为100%,对预测集40个样本的鉴别率为95%。实验结果说明该方法能快速无损地鉴别玉米品种,为玉米的品种鉴别提供了一种新方法。 相似文献
16.
基于主成分分析和径向基网络的水稻胡麻斑病严重度估测 总被引:6,自引:0,他引:6
对植被病害严重度的精确预测是采取植保措施的关键,同时对减少农药使用量也具有积极意义。该研究首先对叶片光谱反射数据进行重采样和求一阶、二阶微分,再用主成分分析PCA技术对上述变换光谱进行分析,最后结合径向基函数神经网络RBFN对水稻胡麻叶斑病严重度进行预测。将全部的光谱数据和病害严重度分为两组,75%用于网络训练,25%用作网络性能测试。文中对预测结果准确性有重要影响的径向基函数扩展速率和不同的数据处理方法进行了讨论,研究发现,一阶微分光谱经PCA压缩后,获得主分量光谱,输入RBN,病害严重度的预测均方根误差仅有7.73%。表明:主成分分析和径向基函数神经网络(PCA-RBFN)相结合,可以对水稻胡麻斑病严重度进行快速、精确的估算。 相似文献
17.
一种基于可见-近红外光谱快速鉴别茶叶品种的新方法 总被引:26,自引:11,他引:26
提出了一种用可见-近红外光谱技术快速无损鉴别茶叶品种的新方法。应用可见-近红外光谱仪测定5个品种茶叶的光谱曲线,用主成分分析法对不同品种茶叶进行聚类分析并获得茶叶的可见-近红外光谱数据的主成分,再结合人工神经网络技术建立模型进行品种鉴别。主成分分析表明,以主成分1和2对所有建模样本的得分值做出的得分图,对不同种类茶叶具有较好的聚类作用,可以定性分析茶叶种类。把主成分分析得到的前6个主成分作为神经网络的输入,茶叶品种值作为神经网络的输出,通过5个茶叶品种共125个样本的训练和学习,建立了茶叶品种鉴别的3层BP人工神经网络模型,对未知的25个样本进行鉴别,品种识别准确率达到100%。说明本文提出的方法具有很好的分类和鉴别作用,为茶叶的品种快速鉴别提供了一种新方法。 相似文献
18.
为了检测太阳能电池的缺陷,建立了太阳能电池板的电致发光(EL)图像与其缺陷类型间的神经网络预测模型,可以对太阳能电池板不同类型缺陷进行自适应检测。首先,采用主成分分量分析(PCA)算法对电致发光(EL)图像训练样本集降维;然后,将降维后得到的数据输入神经网络预测模型进行学习,对模型的参数进行优化选取;最后,将训练好的网络对测试样本集进行仿真。仿真结果表明:在采用相同的训练样本集和测试样本集条件下,与反向传播神经网络(BPNN)相比,径向基神经网络(RBFNN)具有全局最优特性,结构简单,最高识别率达96.25%,计算时间较短,能满足在线检测的要求。 相似文献
19.
星系通常分为正常星系(NG)与活动星系(AG)两类。文章提出了一种自动获取NG红移的快速有效方法: (1) 由NG模板根据红移范围Ⅰ: 0.0~0.3与Ⅱ: 0.3~0.5模拟得到两类星系样本, 进行PCA变换获得样本特征向量; (2) 利用概率神经网络设计两类样本特征向量的Bayes分类器; (3) 对于实际NG光谱数据, 利用Bayes分类器进行分类确定其红移的范围, 然后在此范围内进行模板匹配得到红移的准确值。与在整个红移范围内的模板匹配方法相比, 此方法不但节省了50%的模板匹配运算量, 而且还大大提高了红移值测量的精度。文章研究结果对于大型光谱巡天所产生的海量数据的自动处理具有重要意义。 相似文献
20.
红木的近红外光谱分析 总被引:1,自引:0,他引:1
红木珍贵、种类多,大多数人对红木种类及真伪难以或无法鉴别。利用近红外光谱技术对国家标准中八类红木的近红外光谱进行分析,研究结果表明:(1)近红外光谱与红木色度学参数(L*,a*和b*)之间存在非常高的相关性,预测值与实测红木L*,a*和b*值的相关性分别达到0.988,0.991和0.993;(2)利用化学计量学中的主成分分析(PCA)方法可以将八类红木清楚地区分成八个相应的类别,利用三个主成份信息绘制的三维PCA得分图比二维图更能直观地展现八类红木的区别。研究结果说明应用近红外光谱技术识别红木类别具有可行性,这为开发红木的鉴定或识别提供新的方法和研究思路。 相似文献