首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temperature dependence of the heat capacity of carbosilane dendrimer of the seventh generation of series 3 × 3 with phenylic substituent on the initial branching center and terminal butyl groups was studied by the methods of precision adiabatic vacuum calorimetry and differential scanning calorimetry over the temperature range T = 7–580 K for the first time. Physical transformations in the above temperature range were detected and their standard thermodynamic characteristics estimated and analyzed. The experimental results were used to calculate standard thermodynamic functions C p (T), H (T)-H (0), S (T)-S (0), and G (T)-H (0) (0) over the range T → 0–580 K and standard entropy of formation of dendrimer at T = 298.15 K. The thermodynamic properties of carbosilane dendrimers of the seventh generation of series 4 × 3 with terminal butyl groups and the samples studied in this work were compared.  相似文献   

2.
Temperature dependences of the specific heats, characteristic temperatures, and enthalpies of physical transformations of the first to fifth generations of carbosilane dendrimers with allyl terminal groups were studied using an adiabatic vacuum calorimeter in the temperature range 6—340 K. The error of measurements was, as a rule, about 0.2%. Thermodynamic characteristics of physical transformations of the dendrimers were determined and their thermodynamic functions C p°(T), H°(T)—H°(0), S°(T)—S°(0), and G°(T)—H°(0) were calculated for the temperature range 0—340 K. The thermodynamic functions of the dendrimers are linearly related to their molecular weights, the number of allyl groups on their outer spheres, and the number of moles of diallylmethylsilane per mole of the dendrimers formed. Additive dependence of the properties of the dendrimers on their chemical composition and structure indicates that the energy of interaction between structural fragments of the dendrimers is independent of the dendrimer generation number. The fractal dimensions, D, of all dendrimers studied in this work are 1.2—1.3 in the temperature range 30—50 K, thus indicating a chain-layered structure of the dendrimer glasses.  相似文献   

3.
The temperature dependences of the heat capacities of fluorinated derivatives of carbosilane dendrimers of high (4.5 and 7.5) generations were studied by adiabatic vacuum calorimetry in the range from 6 to 340 K for the first time. The standard thermodynamic characteristics of devitrification were estimated. The experimental results were used to calculate the standard thermodynamic functions C p °(T), H°(T)?H°(0), S°(T)?S°(0), and G°(T)-H°(0) over the range from T??0 to 340 K and standard entropies of formation of dendrimers at T = 298.15 K. The low-temperature (T ?? 50 K) heat capacity was analyzed by using Debye??s heat capacity theory of solids and the multifractal model. The values of fractal dimensionality D were determined, and some conclusions about topology of the studied structures were made. The standard thermodynamic characteristics of the studied fluorinated derivatives of carbosilane dendrimers were compared.  相似文献   

4.
Temperature dependences of the heat capacity of carbosilane dendrimers with butyl terminal groups of the seventh and ninth generations were determined in the temperature range from 6 to 600 K by precision adiabatic vacuum calorimetry and differential scanning (dynamic) calorimetry. The physical transitions were revealed and their thermodynamic characteristics were analyzed. The experimental data obtained were used to calculate the standard thermodynamic functions C p (T), H°(T) − H°(0), S°(T), and G°(T) − H°(0) for the temperature range from T → 0 to 600 K. The thermodynamic function-molar weight isotherms for the dendrimers of the third–ninth generations with terminal butyl groups in the glassy and highly elastic state are linear. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1924–1928, October, 2007.  相似文献   

5.
The temperature dependence of the heat capacity of a first-generation liquid crystal carbosilane dendrimer with methoxyphenyl benzoate end groups is studied for the first time in the region of 6–370 K by means of precision adiabatic vacuum calorimetry. Physical transformations are observed in this interval of temperatures, and their standard thermodynamic characteristics are determined and discussed. Standard thermodynamic functions Cp°(T), H°(T) ? H°(0), S°(T) ? S°(0), and G°(T) ? H°(0) are calculated from the obtained experimental data for the region of Т → 0 to 370 K. The standard entropy of formation of the dendrimer in the partially crystalline state at Т = 298.15 K is calculated, and the standard entropy of the hypothetic reaction of its synthesis at this temperature is estimated. The thermodynamic properties of the studied dendrimer are compared to those of second- and fourth-generation liquid crystal carbosilane dendrimers with the same end groups studied earlier.  相似文献   

6.
In an adiabatic vacuum calorimeter, the temperature dependence of the heat capacity C p of phenylated polyphenylene and initial comonomer 1,4-bis(2,4,5-triphenylcyclopentadienone-3-yl)benzene was studied between 6 and 340 K with an uncertainty of about 0.2%. In a calorimeter with a static bomb and an isothermal shield their energies of combustion DUcomb were measured. From the experimental data, the thermodynamic functions C p 0 (T), H 0(T)-H 0(0), S 0(T)-S0(0), G 0(T)-H 0(0) were calculated from 0 to 340 K, and standard enthalpies of combustion ΔH comb 0 and thermodynamic parameters of formation-enthalpies ΔH f 0, entropies ΔH f 0, Gibbs functions ΔG f 0 - of the substances studied were estimated at T=298.15 K at standard pressure. The results were used to calculate the thermodynamic characteristics (ΔH f 0S f 0, ΔG f 0) of phenylated polyphenylene synthesis in the range from 0 to 340 K. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The temperature dependence of the heat capacity of bis(η6-o-xylene)chromium(I) fulleride, [(η6-(o-xylene))2Cr]+?[C60]??, over the temperature range 6–340 K was measured on an adiabatic vacuum calorimeter. The low-temperature (20 K ≤ T ≤ 50 K) heat capacity was subjected to multifractal processing; conclusions about the heterodynamic character of the structure were drawn. The experimental data were used to calculate the standard thermodynamic functions C p ° (T), H °(T)-H °(0), S °(T), and G °(T)-H °(0) over the temperature range from T → 0 to 340 K and estimate the standard entropy of fulleride formation from simple substances at 298.15 K. The standard thermodynamic characteristics of [(η6-(o-xylene))2Cr]+?[C60]?? were compared with those of the initial fullerene C60.  相似文献   

8.
The thermodynamic properties of styrenetricarbonylchromium, -methylstyrenetricarbonylchromium, and p-methylstyrenetricarbonylchromium were studied with adiabatic vacuum and dynamic calorimeters. The heat capacity in the range 5-450 K (error about 0.3% in most cases) and the temperatures and enthalpies of the phase transitions were determined. The experimental data were used to calculate the thermodynamic functions C 0 p(T), H 0(T) - H 0(0), S 0(T), and G 0(T) - H 0(0) for the range from 0 to 330-400 K, and also the isochoric heat capacity C v and its lattice (Cv,latt) and atomic (C v,at) contributions for the range from 0 K to T 0 m; the parameters = C 0 p/C v were evaluated. The thermodynamic properties were considered in relation to the composition and structure of the compounds.  相似文献   

9.
The temperature dependence of the heat capacity of star-shaped fullerene-containing poly-N-vinylpyrrolidone was studied over the temperature range 6–390 K by precision adiabatic vacuum and dynamic scanning calorimetry. The temperature intervals and thermodynamic characteristics of phase transitions were determined. The low-temperature dependence of the heat capacity of the substance was analyzed according to the Debye theory of the heat capacity of solids and its multifractal generalization. The data obtained were used to calculate the standard thermodynamic functions C p o (T),H o(T)-H o(0), S o(T), and G o(T)-H o(0) of fullerene-containing poly-N-vinylpyrrolidone from T → 0 to 390 K. The standard entropy of formation of the polymer from simple substances and the entropy of its synthesis from poly-N-vinylpyrrolidone and fullerite C60 at 298.15 K were calculated. The thermodynamic characteristics of fullerene-containing poly-N-vinylpyrrolidone are compared with those of the polymer-analogue without C60.  相似文献   

10.
The temperature dependence of the heat capacity C p o= f(T) 2 of 2-ethylhexyl acrylate was studied in an adiabatic vacuum calorimeter over the temperature range 6–350 K. Measurement errors were mainly of 0.2%. Glass formation and vitreous state parameters were determined. An isothermic shell calorimeter with a static bomb was used to measure the energy of combustion of 2-ethylhexyl acrylate. The experimental data were used to calculate the standard thermodynamic functions C p o(T), H o(T)-H o(0), S o(T)-S o(0), and G o(T)-H o(0) of the compound in the vitreous and liquid states over the temperature range from T → 0 to 350 K, the standard enthalpies of combustion Δc H o, and the thermodynamic characteristics of formation Δf H o, Δf S o, and Δf G o at 298.15 K and p = 0.1 MPa.  相似文献   

11.
The temperature dependences of the heat capacities of carbosilane dendrimers of the third and sixth generations with ethyleneoxide terminal groups are examined for the first time by means of precision adiabatic vacuum calorimetry at temperatures between 6.5 and 350 K. In this temperature range, physical transformations are observed and their standard thermodynamic characteristics are determined and discussed. The standard thermodynamic functions are calculated per nominal mole of a chosen unit using the obtained experimental data: C° p (T), H°(T) - H°(0), S°(T) - S°(0), and G°(T) - H°(0) in the interval T → 0 to 350 K, and the standard entropies of formation at T = 298.15 K. The low-temperature (T ≤ 50 K) heat capacity is analyzed using the Debye theory of specific heat and a multifractal model. The values of fractal dimension D are also determined, and conclusions on the investigated structures’ topology are drawn. The corresponding thermodynamic properties of the studied dendrimers are compared as well.  相似文献   

12.
The heat capacity of a glassy third-generation poly(phenylene-pyridyl) dendron decorated with dodecyl groups is studied for the first time via high-precision adiabatic vacuum and differential scanning calorimetry in the temperature range of 6 to 520 K. The standard thermodynamic functions (molar heat capacity Cp°, enthalpy H°(T), entropy S°(T), and Gibbs energy G°(T)-H°(0)) in the range of T → 0 to 480 K, and the entropy of formation at 298.15 K, are calculated on the basis of the obtained data. The thermodynamic properties of the dendron and the corresponding third-generation poly(phenylene-pyridyl) dendrimer studied earlier are compared.  相似文献   

13.
Tmperature dependence of heat capacity of N-(trimethylsilyl)ethyleneimine, N-(triethylsilyl)-ethyleneimine, N-(dimethylphenylsilyl)ethyleneimine with zinc chloride was studied in the 5-340 K rangein an adiabatic vacuum calorimeter with 0.2% error. From the data obtained tge complexes thermodynamicfunctions C0 p(T), H 0(T)-H 0(0), S 0(T)-S 0(0) and G 0(T)-H 0(0) are obtained in the 0-340 K, as well as fractal dimensions D and characteristic temperatures max for the functions of gractal heat capacity of solid substances.  相似文献   

14.
The heat capacities of first- and third-generation carbosilane dendrimers with terminal phenyldioxolane groups are studied as a function of temperature via vacuum and differential scanning calorimetry in the range of 6 to 520 K. Physical transformations that occur in the above temperature range are detected and their standard thermodynamic characteristics are determined and analyzed. Standard thermodynamic functions Cpο(T), [H°(T) ? H°(0)], [S°(T) ? S°(0)], and [G°(T) ? H°(0)] in the temperature range of T → 0 to 520 K for different physical states and the standard entropies of formation of the studied dendrimers at T = 298.15 K are calculated, based on the obtained experimental data.  相似文献   

15.
By adiabatic vacuum and dynamic calorimetry, heat capacity for poly[bis(trifluoroethoxy)phosphazene] has been determined over the 6–620 K range. Physical transformations of the polymer on its heating and cooling have been detected and characterized. Smoothed heat capacity C p0(T) and standard thermodynamic functions (H 0(T)-H 0(0), S 0(T) and G 0(T)-H 0(0)) of poly[bis(trifluoroethoxy)phosphazene] have been evaluated for the temperature range from T→0 to 560 K. The standard entropy of formation Δf S 0 at T=298.15 K has been also determined. Fractal dimensions D in the heat capacity function of the multifractal variant of Debye’s theory of heat capacity of solids characterizing the heterodynamics of the tested polymer have been determined.  相似文献   

16.
The temperature dependence of heat capacity C p o = f (T) of second generation hard poly(phenylene-pyridyl) dendrimer (G2-24Py) was measured by a adiabatic vacuum calorimeter over the temperature range 6–320 K for the first time. The experimental results were used to calculate the standard thermodynamic functions: heat capacity C p o (T), enthalpy H o(T)–H o(0), entropy S o(T)–S o(0) and Gibbs function G o(T)–H o(0) over the range from T → 0 K to 320 K. The standard entropy of formation at T = 298.15 K of G2-24Py was calculated. The low-temperature heat capacity was analyzed based on Debye’s heat capacity theory of solids. Fractal treatment of the heat capacity was performed and the values of the temperature characteristics and fractal dimension D were determined. Some conclusions regarding structure topology are given.  相似文献   

17.
The temperature dependence of heat capacity C p o = f(T) of fullerene derivative (t-Bu)12C60 has been measured by a adiabatic vacuum calorimeter over the temperature range T = 6–350 K and by a differential scanning calorimeter over the temperature range T = 330–420 K for the first time. The low-temperature (T ≤ 50 K) dependence of the heat capacity was analyzed based on Debye’s the heat capacity theory of solids and its fractal variant. As a consequence, the conclusion about structure heterodynamicity is given. The experimental results have been used to calculate the standard thermodynamic functions C p o (T), H o(T)−H o(0), S o(T) and G o(T) − H o(0) over the range from T → 0 to 420 K. The standard entropy of formation at 298.15 K of fullerene derivative under study was calculated. The temperature of decomposition onset of derivative was determined by differential scanning calorimetery and thermogravimetric analysis. The standard thermodynamic characteristics of (t-Bu)12C60 and C60 fullerite were compared.  相似文献   

18.
Heat capacity C p(T) of the orthorhombic polymorph of L-cysteine was measured in the temperature range 6–300 K by adiabatic calorimetry; thermodynamic functions were calculated based on these measurements. At 298.15 K the values of heat capacity, C p; entropy, S m0(T)-S m0(0); difference in the enthalpy, H m0(T)-H m0(0), are equal, respectively, to 144.6±0.3 J K−1 mol−1, 169.0±0.4 J K−1 mol−1 and 24960±50 J mol−1. An anomaly of heat capacity near 70 K was registered as a small, 3–5% height, diffuse ‘jump’ accompanied by the substantial increase in the thermal relaxation time. The shape of the anomaly is sensitive to thermal pre-history of the sample.  相似文献   

19.
The temperature dependence of heat capacity C p ° = f(T) of triphenylantimony bis(acetophenoneoximate) Ph3Sb(ONCPhMe)2 was measured for the first time in an adiabatic vacuum calorimeter in the range of 6.5–370 K and a differential scanning calorimeter in the range of 350–463 K. The temperature, enthalpy, and entropy of fusion were determined. Treatment of low-temperature (20 K ≤ T ≤ 50 K) heat capacity was performed on the basis of Debye’s theory of the heat capacity of solids and its multifractal model and, as a consequence, a conclusion was drawn on the type of structure topology. Standard thermodynamic functions C p °(T), H°(T) — H°(0), S°(T), and G°(T) — H°(0) were calculated according to the experimental data obtained for the compound mentioned in the crystalline and liquid states for the range of T → 0–460 K. The standard entropy of the formation of crystalline Ph3Sb(ONCPhMe)2 was determined at T = 298.15 K.  相似文献   

20.
The temperature dependences of the heat capacity C p° = f(T) were studied in an adiabatic vacuum calorimeter for the orthorhombic, tetragonal, and rhombohedral polymeric C60 phases in the 7—340 K temperature interval with an error of 0.2%. Comparative analysis of C p° of these phases formed by stacking of one-dimensional and two types of two-dimensional polyfullerenes C60, was performed, and their fractal dimensionalities D were determined for temperatures below 50 K. The thermodynamic functions of the crystalline polymeric C60 phases were calculated in the temperature region from O 0 to 340 K: C p°(T), H°(T) — H°(0), S°(T) — S°(0), and G°(T) — H°(0). Assuming that S°(0) = 0, the standard entropies of formation f S° of these phases from graphite at T = 298.15 K and standard pressure were calculated. In addition, the entropies of transformation of the initial face-centered cubic phase of fullerite C60 in the crystalline polymeric C60 phases and entropies of their interconversions under the same conditions were estimated. The thermodynamic characteristics of the polymeric C60 phases were reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号