首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three hydrophilic immobilized metal affinity chromatographic packings for HPLC have been synthesized by chemical modification of 3.0 µm monodisperse non‐porous poly(glycidyl methacrylate‐co‐ethylenedimethacrylate) (PGMA/EDMA) beads. The retention behavior of proteins on the metal ion chelated columns loaded with copper(II), nickel(II) and zin(II) ion was studied. The effect of pH on the protein retention was investigated on both the naked and metal ion chelated columns in the range from 4.0 to 9.0. Four proteins were quickly separated in 3.0 min with linear gradient elution at a flow rate of 3.0 mL/min by using the synthesized Ni2+‐IDA (iminodiacetic acid) packings. The separation time was shorter than other immobilized metal affinity chromatography reported in the literature. Purification of lysozyme from egg white and trypsin on the commercially available trypsin was performed on the naked‐IDA and Cu2+‐IDA columns, respectively. The purities of the purified trypsin and lysozyme were more than 92% and 95%, respectively.  相似文献   

2.
Employing immobilized metal‐ion affinity chromatography and magnetic separation could ideally provide a useful analytical strategy for purifying His‐tagged protein. In the current study, a facile route was designed to prepare CMPEI‐Ni2+@SiO2@Fe3O4 (CMPEI=carboxymethylated polyethyleneimine) magnetic nanoparticles composed of a strong magnetic core of Fe3O4 and a Ni2+‐immobilized carboxymethylated polyethyleneimine coated outside shell, which was formed by electrostatic interactions between polyanionic electrolyte of carboxymethylated polyethyleneimine and positively charged surface of 3‐(trimethoxysilyl)propylamin modified SiO2@Fe3O4. The resulting CMPEI‐Ni2+@SiO2@Fe3O4 composite nanoparticles displayed well‐uniform structure and high magnetic responsiveness. Hexa His‐tagged peptides and purified His‐tagged recombinant retinoid X receptor alpha were chosen as the model samples to evaluate the adsorption, capacity, and reusability of the composite nanoparticles. The results demonstrated the CMPEI‐Ni2+@SiO2@Fe3O4 nanoparticles possessed rapid adsorption, large capacity, and good recyclability. The obtained nanoparticles were further used to purify His‐tagged protein in practical environment. It was found that the nanoparticles could selectively capture His‐tagged recombinant retinoid X receptor protein from complex cell lysate. Owing to its easy synthesis, large binding capacity, and good reusability, the prepared CMPEI‐Ni2+@SiO2@Fe3O4 magnetic nanoparticles have great potential for application in biotechnological fields.  相似文献   

3.
Some metal‐chelating peptides have antioxidant properties, with potential nutrition, health, and cosmetics applications. This study aimed to simulate their separation on immobilized metal ion affinity chromatography from their affinity constant for immobilized metal ion determined in surface plasmon resonance, both technics are based on peptide‐metal ion interactions. In our approach, first, the affinity constant of synthetic peptides was determined by surface plasmon resonance and used as input data to numerically simulate the chromatographic separation with a transport‐dispersive model based on Langmuir adsorption isotherm. Then, chromatographic separation was applied on the same peptides to determine their retention time and compare this experimental tR with the simulated tR obtained from simulation from surface plasmon resonance data. For the investigated peptides, the relative values of tR were comparable. Hence, our study demonstrated the pertinence of such numerical simulation correlating immobilized metal ion affinity chromatography and surface plasmon resonance.  相似文献   

4.
Silica (SiO2) nanospheres (NSs) with immobilized metal ligands have been prepared for the affinity separation of proteins. First, SiO2 NSs were prepared by controlled hydrolysis of tetraethoxysilane in a basic aqueous-ethanol solution. Then through reaction of iminodiacetic acid (IDA) with 3-glycidoxypropyltrimethoxysilane and immobilization of them onto the surfaces of above SiO2 NSs, novel affinity adsorbents with IDA chelating groups were obtained. After chelating Ni2+ ions, the SiO2–IDA–Ni2+ NSs were applied to separate his-tagged proteins directly from the mixture of lysed cells. The SiO2–IDA–Ni2+ NSs present negligible nonspecific protein adsorption and high protein binding ability (28.3 mg/g).  相似文献   

5.
A new hydrophilic strong anion-exchange (SAX) stationary phase for HPLC has been synthesized by chemical modification of macroporous 8.0-m monodisperse poly(glycidylmethacrylate-co-ethylenedimethacrylate) beads (PGMA/EDMA). The stationary phase was evaluated in detail to determine its ion-exchange properties, separability, reproducibility, hydrophilicity, and the effect of column loading and pH on the separation and retention of proteins. It was found to have an ion-exchange chromatographic (IEC) retention mechanism. The highest dynamic protein loading capacity of the synthesized SAX packing for BSA was 22.6 mg g–1. Five proteins were separated within 6.0 min using the synthesized SAX resin. The SAX resin was also used for rapid separation and purification of recombinant human stem cell factor (rhSCF) from a crude extract solution in only one step. The purity of the purified of rhSCF was >92.4%.  相似文献   

6.
The core–shell structure Fe3O4/SiO2 magnetic microspheres were prepared by a sol–gel method, and immobiled with iminodiacetic acid (IDA) as metal ion affinity ligands for protein adsorption. The size, morphology, magnetic properties and surface modification of magnetic silica nanospheres were characterized by various modern analytical instruments. It was shown that the magnetic silica nanospheres exhibited superparamagnetism with saturation magnetization values of up to 58.1 emu/g. Three divalent metal ions, Cu2+, Ni2+ and Zn2+, were chelated on the Fe3O4@SiO2–IDA magnetic microspheres to adsorb lysozyme. The results indicated that Ni2+‐chelating magnetic microspheres had the maximum adsorption capacity for lysozyme of 51.0 mg/g, adsorption equilibrium could be achieved within 60 min and the adsorbed protein could be easily eluted. Furthermore, the synthesized Fe3O4@SiO2–IDA–Ni2+ magnetic microspheres were successfully applied for selective enrichment lysozyme from egg white and His‐tag recombinant Homer 1a from the inclusion extraction expressed in Escherichia coli. The result indicated that the magnetic microspheres showed unique characteristics of high selective separation behavior of protein mixture, low nonspecific adsorption, and easy handling. This demonstrates that the magnetic silica microspheres can be used efficiently in protein separation or purification and show great potential in the pretreatment of the biological sample. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A novel metal aquo‐ion affinity chromatography has been developed for the analysis of basic compounds using heat‐treated silica gel containing hydrated metal cations (metal aquo‐ions) as the packing material. The packing materials of the metal aquo‐ion affinity chromatography were prepared by the immobilization of a single metal component such as Fe(III), Al(III), Ag(I), and Ni(II) on silica gel followed by extensive heat treatment. The immobilized metals form aquo‐ions to present cation‐exchange ability for basic analytes and the cation‐exchange ability for basic analytes depends on pKa of the immobilized metal species. In the present study, to evaluate the retention characteristics of metal aquo‐ion affinity chromatography, the on‐line solid‐phase extraction of drugs was investigated. Obtained data clearly evidence the selective retention capability of metal aquo‐ion affinity chromatography for basic analytes with sufficient capacity.  相似文献   

8.
Novel high‐capacity Ni2+ immobilized metal ion affinity chromatographic media were prepared through the dextran‐grafting process. Dextran was grafted to an allyl‐activated agarose‐based matrix followed by functionalization for the immobilized metal ion affinity chromatographic media. With elaborate regulation of the allylation degree, dextran was completely or partly grafted to agarose microspheres, namely, completely dextran‐grafted agarose microspheres and partly dextran‐grafted ones, respectively. Confocal laser scanning microscope results demonstrated that a good adjustment of dextran‐grafting degree was achieved, and dextran was distributed uniformly in whole completely dextran‐grafted microspheres, while just distributed around the outside of the partly dextran‐grafted ones. Flow hydrodynamic properties were improved greatly after the dextran‐grafting process, and the flow velocity increased by about 30% compared with that of a commercial chromatographic medium (Ni Sepharose FF). A significant improvement of protein binding performance was also achieved by the dextran‐grafting process, and partly dextran‐grafted Ni2+ chelating medium had a maximum binding capacity for His‐tagged lactate dehydrogenase about 2.5 times higher than that of Ni Sepharose FF. The results indicated that this novel chromatographic medium is promising for applications in high‐efficiency and large‐scale protein purification.  相似文献   

9.
Abstract

This review discusses the principles of immobilized metal ion affinity chromatography (IMAC) and its applications to protein separations. IMAC functions by binding the accessible electron-donating pendant groups of a protein - such as histidine, cysteine, and tryptophan - to a metal ion which is held by a chelating group covalently attached on a stationary support. A common chelating group is iminodiacetate. The ions commonly used are of borderline or soft metals, such as Cu2+, Ni2+, Co2+, and Zn2+. Protein retention in IMAC depends on the number and type of pendant groups which can interact with the metal. The interaction is affected by a variety of independent variables such as pH, temperature, solvent type, salt type, salt concentration, nature of immobilized metal and chelate, ligand density, and protein size. Proteins are usually eluted by a decreasing pH gradient or by an increasing gradient of a competitive agent, such as imidazole, in a buffer. There are still several unresolved issues in IMAC. The exact structures of protein-immobilized metal complexes need to be known so that retention behavior of proteins can be fully understood and sorbent structures can be optimized. Engineering parameters, such as adsorption/desorption rate constants, sorbent capacities, and intraparticle diffusivities, need to be developed for most protein systems. Engineering analysis and quantitative understanding are also needed so that IMAC can be used efficiently for large scale protein separations.  相似文献   

10.
In our previous study, we have observed that the chelation of various metal ions to the His‐tag motifs mostly involves the i and i+2 His residues for Ni2+, Cu2+, Zn2+ and Co2+. In the present study, various 200 ps molecular dynamics simulations were further conducted to investigate the chelating pathway of various metal ions to the His‐tag motif with 6 His residues (His‐tag6) and the binding affinities of these metal binding pockets towards these metal ions. The results indicate that His‐tag6 with the chelated metal ion located in positions His(2,4) or His(3,5) exhibits the strongest affinity for Ni2+ and Cu2+.K+ was found to be preferred to chelate in His(1,3) and His(3,5) coordinations. However, Fe3+ was found to have higher affinity towards His(1,3) and His(2,4) binding pockets. Our results also suggest that Ni2+ exhibits the highest binding affinity towards His‐tag6 over the other metal ions. Most of the structural variations of the His‐tag6 motif were from the Histidyl side chains during metal ion binding. In addition, there is an inverse linear correlation between the final chelated distance and the charge/volume ratio of metal ion. There is a negative correlation between the metal binding affinity and the averaged potential energy generated from the MD simulations.  相似文献   

11.
The interactive behavior of an amphipathic peptide with the Cu2+, Ni2+, and Zn2+ complexes of 1,4‐bis(triazacyclonon‐1‐yl)butane), bis(tacn)but, immobilized onto Sepharose CL‐4B, has been investigated. The effects of incubation time, as well as the incubation buffer pH and ionic strength, have been examined. The binding data have been interrogated using Langmuir, Langmuir‐Freundlich, bi‐Langmuir, and Temkin isothermal models and Scatchard plots. These results confirm that this amphipathic peptide binds with relatively high capacities to the immobilized Cu2+‐ and Ni2+‐1,4‐bis(triazacyclonon‐1‐yl)butane)‐Sepharose CL‐4B sorbents via at least two discrete sites. However, the corresponding immobilized Zn2+‐sorbent had low binding capacity. Moreover, the magnitude of the binding capacities of these sorbents was dependent on the pH and ionic strength of the incubation buffer. These results are relevant to the isolation of E. coli expressed recombinant proteins that incorporate this and related amphipathic peptide tags, containing two or more histidine residues, located at the N‐ or C‐terminus of the recombinant protein, and the co‐purification of low abundance host cell proteins of diverse structure, by immobilized metal ion affinity chromatographic methods.  相似文献   

12.
Bicyclams inhibit HIV replication by binding to the CXCR4 chemokine receptor, which is the main coreceptor for gp120 used by X4, T‐tropic strains of HIV for membrane fusion and cell entry. Bicyclam AMD3100 mainly interacts with the aspartic acid residues namely Asp171 and Asp262, which are located at the extracellular ends in the CXCR4 coreceptor. Incorporation of some metal ions by the macrocyclic rings of bicyclam enhances its binding affinity to the CXCR4 receptor and enhances their anti‐HIV activity because the acetate can make a strong coordination bond to the metal and one weaker hydrogen bond to nitrogen in the cyclam ring. The interaction energy (Eint) between 150 metal–bicyclam complexes and aspartic acid has been evaluated. The metal–bicyclam complexes are obtained by the incorporation of six metal ions namely Fe3+, Co3+, Ni2+, Cu2+, Zn2+, and Pd2+ in 25 well‐known bicyclams including AMD3100. In most of the cases, Fe and Co–bicyclam complexes interact best with aspartic acid. The anti‐HIV activity of metal–bicyclam complexes can be predicted on the basis of interaction energy before the synthesis of the metal–bicyclam complex. On the basis of interaction energy, the anti‐HIV activity of bicyclam complexes can be predicted in advance to their synthesis. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

13.
GAO  Qiangb 《中国化学》2009,27(7):1291-1294
基于氯过氧化物酶(CPO)的卤化活性分析,发现某些碱土金属(Ca2+, Mg2+)和过渡金属(Co2+, Ni2+)对CPO具有明显的激活及稳定化作用。例如25 ºC时与CPO在纯缓冲溶液中相比,在75 μmol·L-1 Ca2+,90 μmol·L-1 Mg2+,90 μmol·L-1 Ni2+及105 μmol·L-1 Co2+存在时CPO可分别获得1.33,1.37,1.34 及1.27倍的最大相对活性。而在55 ºC,没有金属离子存在时,CPO 30分钟后仅能保留40%的活性,但在Ca2+,Mg2+离子的介质中,CPO的活性可分别保留81% 和 75%。推测这是由于金属离子结合在CPO活性中心周围的酸-碱催化位点Glu183, His105 and Asp106上,通过底物浓集和诱导有利构象来激活CPO. 同时动力学研究表明金属离子对CPO的激活归因于催化效率(kcat)的提高,以及CPO对底物亲和性及选择性的改善。  相似文献   

14.
Designing small peptides that are capable of binding Cu2+ ions mainly through the side‐chain functionalities is a hard task because the amide nitrogen atoms strongly compete for Cu2+ ion coordination. However, the design of such peptides is important for obtaining biomimetic small systems of metalloenyzmes as well as for the development of artificial systems. With this in mind, a cyclic decapeptide, C‐Asp, which contained three His residues and one Asp residue, and its linear derivative, O‐Asp, were synthesized. The C‐Asp peptide has two Pro? Gly β‐turn‐inducer units and, as a result of cyclization, and as shown by CD spectroscopy, its backbone is constrained into a more defined conformation than O‐Asp, which is linear and contains a single Pro? Gly unit. A detailed potentiometric, mass spectrometric, and spectroscopic study (UV/Vis, CD, and EPR spectroscopy) showed that at a 1:1 Cu2+/peptide ratio, both peptides formed a major [CuHL]2+ species in the pH range 5.0–7.5 (C‐Asp) and 5.5–7.0 (O‐Asp). The corrected stability constants of the protonated species (log K*CuH(O?Asp)=9.28 and log K*CuH(C?Asp)=10.79) indicate that the cyclic peptide binds Cu2+ ions with higher affinity. In addition, the calculated value of Keff shows that this higher affinity for Cu2+ ions prevails at all pH values, not only for a 1:1 ratio but even for a 2:1 ratio. The spectroscopic data of both [CuHL]2+ species are consistent with the exclusive coordination of Cu2+ ions by the side‐chain functionalities of the three His residues and the Asp residue in a square‐planar or square‐pyramidal geometry. Nonetheless, although these data show that, upon metal coordination, both peptides adopt a similar fold, the larger conformational constraints that are present in the cyclic scaffold results in different behaviour for both [CuHL]2+ species. CD and NMR analysis revealed the formation of a more rigid structure and a slower Cu2+‐exchange rate for [CuH(C‐Asp)]2+ compared to [CuH(O‐Asp]2+. This detailed comparative study shows that cyclization has a remarkable effect on the Cu2+‐coordination properties of the C‐Asp peptide, which binds Cu2+ ions with higher affinity at all pH values, stabilizes the [CuHL]2+ species in a wider pH range, and has a slower Cu2+‐exchange rate compared to O‐Asp.  相似文献   

15.
A calix‐conjugated thermo‐responsive hydrogel containing 15% tetra(5‐hexenyloxy)‐p‐tert‐butylcalix[4]arene (HBCalix), P(NIPAM‐co‐HBCalix), was used to remove nickel(II) ions from water. Both thermo‐sensitive properties and the Ni2+‐adsorption capabilities of the prepared P(NIPAM‐co‐HBCalix) hydrogels are investigated. Introduction of the monomer HBCalix considerably enhanced the adsorption of Ni2+ onto the hydrogel by chelation between hexenyloxy groups and metal ion. When HBCalix units capture Ni2+ and forms HBCalix/Ni2+ host–guest complexes, the lower critical solution temperature of the hydrogel shifts to a higher temperature due to both the repulsion between charged HBCali/Ni2+ groups and the osmotic pressure within the hydrogel. Adsorption studies were carried out by varying contact time, counter ion and initial concentration of Ni2+. The evaluation of adsorption properties showed that the hydrogel exhibited better correlation with Langmuir isotherm model. P(NIPAM‐co‐HBCalix) could be used repeatedly with little loss in adsorption capacity by simply changing the environmental temperature. This kind of ion‐recognition hydrogel is promising as a novel adsorption material for adsorption and separation of Ni2+ ions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2401–2408  相似文献   

16.
A 1D double‐helical coordination polymer {[Cd(pbbm)2]2(ClO4)4(H2O)2}n ( 1 ) was successfully constructed by the reaction of Cd(ClO4)2 · 6H2O with 1,1′‐(1,5‐pentanediyl)bis‐1H‐benzimidazole (pbbm). Interestingly, polymer 1 exhibits highly selective capacity for the ionic exchange of Zn2+ and Cu2+ over Co2+ and Ni2+ ions in the crystalline solid state when the crystals of 1 are immersed in the aqueous solutions of the perchlorate salts of Cu2+, Zn2+, Co2+, and Ni2+ ions, respectively, which indicates that central CdII ion exchange might be considered as being dominated by the coordination ability of metal ions to free functional groups, ionic radii of exchanged metal ions, and the solution concentration of adsorbed metal salts. The parent material‐ and ion‐exchange‐induced products are identified by FT‐IR spectroscopy, PXRD patterns as well as SEM and EDS measurements. In addition, the thermal stability of 1 was also investigated.  相似文献   

17.
Controlled synthesis of transition‐metal hydroxides and oxides with earth‐abundant elements have attracted significant interest because of their wide applications, for example as battery electrode materials or electrocatalysts for fuel generation. Here, we report the tuning of the structure of transition‐metal hydroxides and oxides by controlling chemical reactions using an unfocused laser to irradiate the precursor solution. A Nd:YAG laser with wavelengths of 532 nm or 1064 nm was used. The Ni2+, Mn2+, and Co2+ ion‐containing aqueous solution undergoes photo‐induced reactions and produces hollow metal‐oxide nanospheres (Ni0.18Mn0.45Co0.37Ox) or core–shell metal hydroxide nanoflowers ([Ni0.15Mn0.15Co0.7(OH)2](NO3)0.2?H2O), depending on the laser wavelengths. We propose two reaction pathways, either by photo‐induced redox reaction or hydrolysis reaction, which are responsible for the formation of distinct nanostructures. The study of photon‐induced materials growth shines light on the rational design of complex nanostructures with advanced functionalities.  相似文献   

18.
A convenient and versatile method was developed for the separation and detection of alkaline earth metal ions by ion chromatography with indirect UV detection. The chromatographic separation of Mg2+, Ca2+, and Sr2+ was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid as the mobile phase, in which the imidazolium ionic liquid acted as an UV‐absorption reagent. The effects of imidazolium ionic liquids, detection wavelength, acids in the mobile phase, and column temperature on the retention of Mg2+, Ca2+, and Sr2+ were investigated. The main factors influencing the separation and detection were the background UV absorption reagent and the concentration of hydrogen ion in ion chromatography with indirect UV detection. The successful separation and detection of Mg2+, Ca2+, and Sr2+ within 14 min were achieved using the selected chromatographic conditions, and the detection limits (S /N = 3) were 0.06, 0.12, and 0.23 mg/L, respectively. A new separation and detection method of alkaline earth metal ions by ion chromatography with indirect UV detection was developed, and the application range of ionic liquids was expanded.  相似文献   

19.
Titanium dioxide metal oxide affinity chromatography (TiO2‐MOAC) is widely regarded as being more selective than immobilized metal‐ion affinity chromatography (IMAC) for phosphopeptide enrichment. However, the widespread application of TiO2‐MOAC to biological samples is hampered by conflicting reports as to which experimental conditions are optimal. We have evaluated the performance of TiO2‐MOAC under a wide range of loading and elution conditions. Loading and stringent washing of peptides with strongly acidic solutions ensured highly selective enrichment for phosphopeptides, with minimal carryover of non‐phosphorylated peptides. Contrary to previous reports, the addition of glycolic acid to the loading solution was found to reduce specificity towards phosphopeptides. Base elution in ammonium hydroxide or ammonium phosphate provided optimal specificity and recovery of phosphorylated peptides. In contrast, elution with phosphoric acid gave incomplete recovery of phosphopeptides, whereas inclusion of 2,5‐dihydroxybenzoic acid in the eluant introduced a bias against the recovery of multiply phosphorylated peptides. TiO2‐MOAC was also found to be intolerant of many reagents commonly used as phosphatase inhibitors during protein purification. However, TiO2‐MOAC showed higher specificity than immobilized gallium (Ga3+), immobilized iron (Fe3+), or zirconium dioxide (ZrO2) affinity chromatography for phosphopeptide enrichment. Matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) was more effective in detecting larger, multiply phosphorylated peptides than liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS), which was more efficient for smaller, singly phosphorylated peptides. Copyright © 2009 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.  相似文献   

20.
A porous, solid insoluble polysiloxane‐immobilized ligand system bearing pyrogallol active sites of the general formula P? (CH2)3? NH(CH2)3OC6H3(OH)2 (where P represents [Si? O]n siloxane network) has been prepared by the reaction of 3‐aminopropylpolysiloxane with 1,3‐dibromopropane followed by the reaction with pyrogallol. 13C CP‐MAS NMR and X‐ray photoelectron spectroscopy confirmed that the pyrogallol is chemically bonded to the siloxane backbone. Thermal analysis showed that the ligand system is stable under nitrogen at relatively high temperature. The polysiloxane–pyrogallol ligand system exhibits high potential for the uptake of the metal ions (Fe3+, Co2+, Ni2+ and Cu2+). Complexation of the pyrogallol ligand system for the metal ions at the optimum conditions was found to be in the order Fe3+ > Cu2+ > Ni2+ > Co2+. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号