首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Kang HJ  Noh TH  Jin JS  Jung OS 《Inorganic chemistry》2008,47(13):5528-5530
The reaction of (COD)PdCl 2 (COD = 1,5-cyclooctadiene) with bis(3-pyridyl)methylphenylsilane (L) in acetone affords single crystals consisting of cyclodimers, [PdCl 2(L)] 2, whereas the reaction in a mixture of dichloromethane and ethanol yields amorphous spheres consisting of cyclotrimers, [PdCl 2(L)] 3. The interconversion and morphology control between the crystals and the microspheres can be explained by the difference in flexibility between the cyclodimer and cyclotrimer.  相似文献   

2.
首先通过Friedel-Crafts酰基化反应得到1,4-双-(4′-溴苯酰基)苯,经两步合成芳香二胺2,2-双-[4-(4-氨基苯氧基)苯基]丙烷,以1,4-双-(4′-溴苯酰基)苯和2,2-双-[4-(4-氨基苯氧基)苯基]丙烷为单体,以三(二亚苄基丙酮)二钯为催化剂,1.1′-联萘-2.2′-二苯膦(BINAP)为配体,由钯催化的胺基化反应缩聚合成了高分子量含异亚丙基聚亚胺醚酮(pr-PIEK),Mn=5.15×104、Mw=1.26×105.其结构由红外、核磁氢谱和元素分析表征,表征结果与目标结构吻合良好.通过XRD、DSC和TG等对pr-PIEK的主要性能进行分析,结果表明pr-PIEK为无定形态,表现出良好的热稳定性(高的热分解温度TD>450℃)、力学性能(拉伸强度为72.76 MPa、拉伸模量为1013.63 MPa、断裂伸长率为10.32%)和较好的溶解性能,pr-PIEK在室温条件下可溶解在普通有机溶剂氯仿中,50℃溶于丙酮.  相似文献   

3.
Reaction of [Pd(PPh(3))(4)] with 1,1-dichloro-2,3-diarylcyclopropenes gives complexes of the type cis-[PdCl(2)(PPh(3))(C(3)(Ar)(2))] (Ar = Ph 5, Mes 6). Reaction of [Pd(dba)(2)] with 1,1-dichloro-2,3-diarylcyclopropenes in benzene gave the corresponding binuclear palladium complexes trans-[PdCl(2)(C(3)(Ar)(2))](2) (Ar = Ph 7, p-(OMe)C(6)H(4)8, p-(F)C(6)H(4)9). Alternatively, when the reactions were performed in acetonitrile, the complexes trans-[PdCl(2)(NCMe)(C(3)(Ar)(2))] (Ar = Ph 10, p-(OMe)C(6)H(4)11 and p-(F)C(6)H(4)) 12) were isolated. Addition of phosphine ligands to the binuclear palladium complex 7 or acetonitrile adducts 11 and 12 gave complexes of the type cis-[PdCl(2)(PR(3))(C(3)(Ar)(2))] (Ar = Ph, R = Cy 13, Ar = p-(OMe)C(6)H(4), R = Ph 14, Ar = p-(F)C(6)H(4), R = Ph 15). Crystal structures of complexes 6·3.25CHCl(3), 10, 11·H(2)O and 12-15 are reported. DFT calculations of complexes 10-12 indicate the barrier to rotation about the carbene-palladium bond is very low, suggesting limited double bond character in these species. Complexes 5-9 were tested for catalytic activity in C-C coupling (Mizoroki-Heck, Suzuki-Miyaura and, for the first time, Stille reactions) and C-N coupling (Buchwald-Hartwig amination) showing excellent conversion with moderate to high selectivity.  相似文献   

4.
Calix[2]benzo[4]pyrrole m-6 and p-6, each containing two dipyrromethane moieties and two m-phenylene or p-phenylene units, respectively, were readily synthesised from pyrrole, 1,3- and 1,4-bis(1,1'-dimethylhydroxymethyl)benzene, (m-4 and p-4, respectively) and acetone. Macrocycles m-6 and p-6 were tested as receptors for a selection of anions, such as acetate, dihydrogenphosphate and fluoride. The X-ray structures of m-6 and p-6 and those of the complexes m-6F(-), m-6Cl(-) and m-6CH(3)COO(-) (with an nBu(4)N(+) counterion) were also determined.  相似文献   

5.
The reactions of 1,4-bis[2-(tributylstannyl)tetrazol-5-yl]benzene with α,ω-dibromoalkanes were carried out in order to synthesise pendant alkyl halide derivatives of the parent bis-tetrazole. This led to the formation of several alkyl halide derivatives, substituted variously at N1 or N2 on the tetrazole ring. The crystal structures of 1,4-bis[(2-(4-bromobutyl)tetrazol-5-yl)]benzene (2-N,2-N′), 1,4-bis[(2-(4-bromobutyl)tetrazol-5-yl)]benzene (1-N,2-N′) and 1,4-bis[(2-(8-bromooctyl)tetrazol-5-yl)]benzene (2-N,2-N′) are reported. Further discussion involves the structure of 1,4-bis[2-(6-bromohexyl)-2H-tetrazol-5-yl]benzene (2-N,2-N′) previously reported.  相似文献   

6.
Self-assembly of four bis(pyridyl) ligands with longer flexible spacer: 1,4-bis(3-pyridylaminomethyl)benzene (L1), 1,4-bis(2-pyridylaminomethyl)benzene (L2), 1,3-bis(3-pyridylaminomethyl)benzene (L3) and 1,3-bis(2-pyridylaminomethyl)benzene (L4), and CuX (X = Br and I) leads to the formation of eight [Cu(n)X(n)]-based (X = Br and I; n = 1, 2, and 4) complexes, [Cu(2)I(2)L1(PPh(3))(4)] (1), [Cu(4)Cl(2)Br(2)(L4)(2)(PPh(3))(6)]·(CH(3)CN)(2) (2), [Cu(2)I(2)(L3)(2)] (3), {[Cu(2)Br(2)L2(PPh(3))(2)]·(CH(2)Cl(2))(2)}(n) (4), [CuIL1](n)·nCH(2)Cl(2) (5), [CuIL1](n) (6), [CuIL4](n) (7) and [Cu(2)I(2)L4](n) (8), which have been synthesized and characterized by elemental analysis, IR, TG, powder and single-crystal X-ray diffraction. Structural analyses show that the eight complexes possess an increasing dimensionality from 0D (1-3) to 1D (4) to 2D (5-8), in which 1 and 2 contain a CuX unit, 2-7 contain a Cu(2)X(2) unit and 8 contains a Cu(4)X(4) unit. Such evolvement indicates that the conformation of flexible bis(pyridyl) ligands and the participation of triphenylphosphine (PPh(3)) as a second ligand take an essential role in the framework formation of the Cu(i) complexes. Moreover, a pair of symmetry-related L3 ligands in complex 3 coordinate to the rhomboid Cu(2)I(2) dimer to form "handcuff-shaped" dinuclear structures, which are further joined together through intermolecular N-HI hydrogen bonds to furnish a 2D (4,4) layer. Although complexes 5 and 6 exhibit a similar 2D (4,4) layer constructed from L1 ligand bridging [Cu(2)I(2)](n) units, the different packing fashion of the layers leads to the formation of 3D porous frameworks of 5 and dense 3D frameworks of 6. The "twisted-boat" conformation of the Cu(4)I(4) tetramer unit in complex 8 has not been reported so far.  相似文献   

7.
Ten new chiral coordination polymers, namely, [Ni(L)(H(2)O)(2)] (1), [Co(L)(H(2)O)(2)] (2), [Cd(L)(H(2)O)] (3), [Cd(L)(phen)] (4), [Mn(2)(L)(2) (phen)(2)]·H(2)O (5), [Cd(2)(L)(2)(biim-4)(2)] (6), [Zn(2)(L)(2)(biim-4)(2)] (7), [Cd(L)(pbib)] (8), [Cd(L)(bbtz)] (9) and [Cd(L)(biim-6)] (10), where phen = 1,10-phenathroline, biim-4 = 1,1'-(1,4-butanediyl)bis(imidazole), pbib = 1,4-bis(imidazole-1-ylmethyl)benzene, bbtz = 1,4-bis(1,2,4-triazol-1-ylmethyl)benzene, biim-6 = 1,1'-(1,6-hexanedidyl)bis(imidazole), and H(2)L = (R)-2-(4'-(4'-carboxybenzyloxy)phenoxy)propanoic acid, have been synthesized under hydrothermal conditions. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by infrared spectra (IR), powder X-ray diffraction (PXRD), elemental analyses and thermogravimetric (TG) analyses. Compounds 1 and 2 exhibit similar 1D left-handed helical chains, which are further extended into 3D supramolecular structures through O-H···O hydrogen-bonding interactions, respectively. Compound 3 shows a 2D double-layer architecture containing helical chains. Compound 4 features two types of 2D undulated sheets with helical chains, which are stacked in an ABAB fashion along the c direction. Compound 5 possesses a 1D double chain ribbon structure containing unusual meso-helical chains, which is linked by π-π interactions into a 2D supramolecular layer. These layers are further extended by hydrogen-bonding interactions to form a 3D supramolecular assembly. Compounds 6 and 7 are isostructural and exhibit 2D (4(4))-sql networks with helical chains. Neighboring sheets are further linked by C-H···O hydrogen-bonding interactions to generate 3D supramolecular architectures. Compounds 8-10 are isostructural and display 3D 3-fold interpenetrating diamond frameworks with helical chains. The effects of coordination modes of L anions, metal ions and N-donor ligands on the structures of the coordination polymers have been discussed. The luminescent properties of 3, 4 and 6-10 have also been investigated in detail.  相似文献   

8.
Liu QD  Jia WL  Wang S 《Inorganic chemistry》2005,44(5):1332-1343
Five new 2-(2'-pyridyl)benzimidazole derivative ligands, 1,4-bis[2-(2'-pyridyl)benzimidazolyl]benzene (1,4-bmb), 4,4'-bis[2-(2'-pyridyl)benzimidazolyl]biphenyl (bmbp), 1-bromo-4-[2-(2'-pyridyl)benzimidazolyl]benzene (Brmb), 1,3-bis[2-(2'-pyridyl)benzimidazolyl]benzene (1,3-bmb), and 1,3,5-tris[2-(2'-pyridyl)benzimidazolyl]benzene (tmb), have been synthesized by Ullmann condensation methods. The corresponding mononuclear and polynuclear PtII complexes, Pt2(1,4-bmb)Ph4 (1), Pt2(bmbp)Ph4 (2), Pt(Brmb)Ph2 (3), Pt2(1,3-bmb)Ph4 (4), and Pt3(tmb)Ph6 (5), have been obtained by the reaction of the appropriate ligand with [PtPh2(SMe2)]n. The structures of the free ligands 1,4-bmb, bmbp, and tmb, as well as the complexes 1-3, were determined by single-crystal X-ray diffraction. All ligands display fluorescent emissions in the purple/blue region of the spectrum at ambient temperature and phosphorescent emissions in the blue/green region at 77 K, which are attributable to ligand-centered pi --> pi* transition. No ligand-based emission was observed for the PtII complexes 1-5. All PtII complexes display orange/red emissions at 77 K in a frozen solution or in the solid state, attributable to metal-to-ligand charge transfers (MLCT). Variable-temperature 1H NMR experiments establish that complexes 1, 4, and 5 exist in isomeric forms in solution at ambient temperature due to the hindered rotation of the square PtC2N2 planes in the complexes.  相似文献   

9.
Reaction of [PtCl(2)(COD)] and [PtI(2)(COD)] with 2,7-di-tert-butyl-5-diphenylboryl-4-diphenylphosphino-9,9-dimethylthioxanthene (TXPB) afforded square planar [PtCl(2)(TXPB)] (1B) and [PtI(2)(TXPB)] (4B), both of which were crystallographically characterized. Single-crystal X-ray quality crystals were also obtained for [PdCl(2)(TXPB)] (2B; Emslie et al., Organometallics, 2008, 27, 5317) as 2B·2CH(2)Cl(2) and solvent-free 2B. Both the chloro and iodo TXPB complexes exhibit metal-halide-borane bridging interactions similar to those in previously reported [RhCl(CO)(TXPB)] (3B) and [RhI(CO)(TXPB)] (5B) (Emslie et al., Organometallics, 2006, 25, 583 and Inorg. Chem., 2010, 49, 4060). To facilitate a more detailed analysis of M-X-BR(3) (X = Cl and I) interactions, a borane-free analogue of the TXPB ligand, 2,7-di-tert-butyl-4-diphenylphosphino-9,9-dimethylthioxanthene (TXPH), was prepared. Reaction with [PtX(2)(COD)] (X = Cl or I), [PdCl(2)(COD)] and 0.5 [{RhCl(CO)(2)}(2)] provided square planar [PtCl(2)(TXPH)] (1H), [PdCl(2)(TXPH)] (2H), [RhCl(CO)(TXPH)] (3H) and [PtI(2)(TXPH)] (4H). M-Cl-BR(3) and M-I-BR(3) bonding in 1B-5B was then probed through the use of structural comparisons, IR and NMR spectroscopy, cyclic voltammetry, and DFT calculations (Slater-type orbitals, Mayer bond orders, Hirshfeld charges, fragment analysis, SCF deformation density isosurfaces, and energy decomposition analysis).  相似文献   

10.
LF Ma  ML Han  JH Qin  LY Wang  M Du 《Inorganic chemistry》2012,51(17):9431-9442
Five new Mn(II) coordination polymers, namely [Mn(2)(tbip)(2)(bix)] (1), [Mn(3)(tbip)(3)(bix)(2)] (2), [Mn(3)(tbip)(2)(Htbip)(2)(bib)(2)]·4H(2)O (3), [Mn(4)(tbip)(4)(bbp)(2)(H(2)O)(2)] (4), and [Mn(4)(tbip)(4)(bip)]·2H(2)O (5), were prepared by hydrothermal reactions of Mn(II) acetate with H(2)tbip (5-tert-butyl isophthalic acid) in the presence of different di-imidazolyl coligands (bix =1,4-bis(imidazol-1-ylmethyl)benzene, bib =1,4-bis(imidazol) butane, bbp =1,3-bis(benzimidazol)propane, bip =1,3-bis(imidazol)propane). All complexes were characterized by elemental analysis, IR spectra, thermogravimetric analysis, single-crystal X-ray crystallography, and powder X-ray diffraction. Single crystal X-ray studies show that these coordination polymers contain homometallic clusters varying from dimeric, trimeric, and tetrameric motifs to polymeric chains depending upon the coligands used. Complex 1 has a 3D 6-connected polycatenane network with dinuclear [Mn(2)O(2)] secondary building units. Complex 2 possesses a 3D 8-connected structure with trinuclear [Mn(3)(COO)(6)] units. Complex 3 shows a 3D pcu net based on trinuclear [Mn(3)(COO)(6)] clusters as nodes. Complex 4 features a 3D 8-connected structure constructed from the distorted square-grid tetranuclear [Mn(4)(μ(2)-COO)(8)(μ(2)-H(2)O)] units. Complex 5 shows a 3D (4,5,6)-connected net containing 1D μ-O/μ-COO alternately bridged chains. Magnetic susceptibility measurements indicate that complexes 1 and 3-5 show weak antiferromagnetic interactions between the adjacent Mn(II) ions, whereas 2 is a three-spin center homometallic ferromagnetic system.  相似文献   

11.
Reactions of [PdCl2(COD)] with 1 equiv. of the iminophosphorane-phosphine ligands Ph2PCH2P{=NP(=O)(OR)2}Ph2 (R=Et, Ph) lead to the novel Pd(II) derivatives cis-[PdCl2(kappa2-(P,N)-Ph2PCH2P{=NP(=O)(OR)2}Ph2)] (R=Et, Ph). Pd-N bond cleavage readily takes place upon treatment of these species with a variety of two-electron donor ligands. By this way, complexes cis-[PdCl2(kappa1-(P)-Ph2PCH2P{=NP(=O)(OR)2}Ph2)(L)] (R=Et, L=CNtBu, CN-2,6-C6H3Me2, py, P(OMe)3, P(OEt)3; R=Ph, L=CNtBu, CN-2,6-C6H3Me2, py, P(OMe)3, P(OEt)3) have been synthesized in high yields. The addition of two equivalents of ligands to dichloromethane solutions of [PdCl2(COD)] results in the formation of complexes trans-[PdCl2(kappa1-(P)-Ph2PCH2P{=NP(=O)(OR)2}Ph2)2] (R=Et, Ph), which can be converted into the dicationic species [Pd(Ph2PCH2P{=NP(=O)(OR)2}Ph2)2][SbF6]2 (R=Et, Ph) by treatment with AgSbF6. Complex also reacts with CNtBu to afford trans-[Pd(kappa1(P)-Ph2PCH2P{=NP(=O)(OPh)2}Ph2)2(CNtBu)2][SbF6]2. The structures of and have been determined by single-crystal X-ray diffraction methods. In addition, the ability of these Pd(II) complexes to promote the catalytic cycloisomerization of (Z)-3-methylpent-2-en-4-yn-1-ol into 2,3-dimethylfuran has also been studied.  相似文献   

12.
A series of protected and terminal dialkynes with extended pi-conjugation through a condensed aromatic linker unit in the backbone, 1,4-bis(trimethylsilylethynyl)naphthalene, 1,4-bis(ethynyl)naphthalene, 9,10-bis(trimethylsilylethynyl)anthracene, 9,10-bis(ethynyl)anthracene, have been synthesized and characterized spectroscopically. The solid-state structures of and have been confirmed by single crystal X-ray diffraction studies. Reaction of two equivalents of the complex trans-[Ph(Et(3)P)(2)PtCl] with an equivalent of the terminal dialkynes 1,4-bis(ethynyl)benzene and, in (i)Pr(2)NH-CH(2)Cl(2), in the presence of CuI, at room temperature, afforded the platinum(II) di-ynes trans-[Ph(Et(3)P)(2)Pt-C[triple bond, length as m-dash]C-R-C[triple bond, length as m-dash]C-Pt(PEt(3))(2)Ph](R = benzene-1,4-diyl; naphthalene-1,4-diyl and anthracene-9,10-diyl ) while reactions between equimolar quantities of trans-[((n)Bu(3)P)(2)PtCl(2)] and under similar conditions readily afforded the platinum(II) poly-ynes trans-[-((n)Bu(3)P)(2)Pt-C[triple bond]C-R-C[triple bond]C-](n)(R = naphthalene-1,4-diyl and anthracene-9,10-diyl ). The Pt(II) diynes and poly-ynes have been characterized by analytical and spectroscopic methods, and the single crystal X-ray structures of and have been determined. These structures confirm the trans-square planar geometry at the platinum centres and the linear nature of the molecules. The di-ynes and poly-ynes are soluble in organic solvents and readily cast into thin films. Optical spectroscopic measurements reveal that the electron-rich naphthalene and anthracene spacers create strong donor-acceptor interactions between the Pt(II) centres and conjugated ligands along the rigid backbone of the organometallic polymers. Thermogravimetry shows that the di-ynes possess a somewhat higher thermal stability than the corresponding poly-ynes. Both the Pt(II) di-ynes and the poly-ynes exhibit increasing thermal stability along the series of spacers from phenylene through naphthalene to anthracene.  相似文献   

13.
Seven new cobalt(II) phosphites, [Co(HPO(3))(C(14)H(14)N(4))(H(2)O)(2)].2H(2)O (1), [Co(HPO(3))(C(22)H(18)N(4))].H(2)O (2), [Co(2)(HPO(3))(2)(C(22)H(18)N(4))(2)H(2)O].H(2)O (3), [Co(2)(HPO(3))(2)(C(12)H(10)N(4))(1.5)H(2)O].1.5H(2)O (4), [Co(HPO(3))(C(14)H(14)N(4))(0.5)].H(2)O (5), [Co(HPO(3))(C(18)H(16)N(4))(0.5)] (6), and [Co(HPO(3))(C(18)H(16)N(4))(0.5)] (7) were synthesized in the presence of 1,2-bis(imidazol-1-ylmethyl)benzene (L1), 1,4-bis(benzimidazol-1-ylmethyl)benzene (L2), 1,3-bis(benzimidazol-1-ylmethyl)benzene (L3), 1,4-bis(1-imidazolyl)benzene (L4), 1,4-bis(imidazol-1-ylmethyl)benzene (L5), 1,4-bis(imidazol-1-ylmethyl)naphthalene (L6), and 1,5-bis(imidazol-1-ylmethyl)naphthalene (L7), respectively, and their structures were determined by X-ray crystallography. Compound 1 is a molecular compound in which two cobalt(II) ions are held together by double mu-O linkages. The inorganic framework of compounds 2 and 3 are composed of vertex-shared CoO(2)N(2)/CoO(3)N(2) and HPO(3) polyhedra that form four rings; these are further linked by an organic ligand to generate 2D sheets. Compounds 4 and 5 both have 1D inorganic structures, with the bifunctional ligands connected to each side of the ladder by coordination bonds to give 2D hybrid sheets. A 3D organically pillared hybrid framework is observed in 6 and 7. In 6, the stacking of the interlayer pillars gives rise to a small hydrophobic channel that extends through the entire structure parallel to the sheets. The temperature-dependent magnetic susceptibility measurements of these compounds show weak interactions between the metal centers, mediated through the mu-O and/or O-P-O linkages.  相似文献   

14.
The coordination chemistry of the bidentate P,N hybrid ligand 2-(2'-pyridyl)-4,6-diphenylphosphinine (1) towards Pd(II) and Pt(II) has been investigated. The molecular structures of the complexes [PdCl(2)(1)] and [PtCl(2)(1)] were determined by X-ray diffraction, representing the first crystallographically characterized λ(3)-phosphinine-Pd(II) and -Pt(II) complexes. Both complexes reacted with methanol at the P=C double bond at an elevated temperature, leading to the corresponding products [MCl(2)(1H·OCH(3))]. The molecular structure of [PdCl(2)(1H·OCH(3))] was determined crystallographically and revealed that the reaction with methanol proceeds selectively by syn addition and exclusively to one of the P=C double bonds. Strikingly, the reaction of [PdCl(2)(1H·OCH(3))] with the chelating diphosphine DPEphos at room temperature in CH(2)Cl(2) led quantitatively to [PdCl(2)(DPEphos)] and phosphinine 1 by elimination of CH(3)OH and rearomatization of the phosphorus heterocycle.  相似文献   

15.
A straightforward methodology for the high-yielding synthesis of the di-functionalised phosphines {Ph2P(CH2)2NC4H8E, E = NMe (1), O (2), S (3)}via base-catalysed Michael addition is described. Reaction of the functionalised tertiary phosphines 1-3 with PdCl2(MeCN)2 affords complexes in which the ligands are bound in a tridentate fashion, namely [PdCl(kappa3-PNE)]Cl (6a, 8) as the predominant products. A kappa2-PN coordination mode was also identified crystallographically for ligand following its reaction with PdCl2(MeCN)2, which afforded [PdCl2(-kappa2-PN)] (6b) in ca. 5% yield. Conductivity studies of solutions of 6a are consistent with an ionic formulation, however the poor solubility of and precluded their study in a similar fashion. Analysis of bulk samples of [PdCl2(1)] (6) and [PdCl2(3)] (8) by 15N and 31P NMR spectroscopy in the solid state as consistent with exclusive tridentate binding of the PNE ligands. An X-ray crystallographic study has probed the coordination of in the unusual salt [PdCl(-kappa3-PNN)]2[Mg(SO4)2(OH2)4] (10) prepared by treating a methanolic solution of with excess MgSO4. No data could be obtained to support the transformation of 6a into 6b on addition of excess chloride. In contrast, 6a reacts regioselectively with the water-soluble phosphine Cy2PCH2CH2NMe3Cl to afford the cis-diphosphine complex cis-[PdCl(Cy2PCH2CH2NMe3Cl)(1-kappa2-PN)]Cl2 (9). Reaction of 1 with PdCl(Me)(COD) results in the formation of the kappa2-PN dichloride complex [PdCl(Me)(1-kappa(2)-PN)] (11). Attempts to prepare [Pd(Me)(MeCN)(-kappa2-PN)][PF6] (12) through reaction of 11 with NaPF6 in MeCN led to decomposition. Treatment of PdMe2(TMEDA) with 1 at low temperature initially affords [PdMe2(1-kappa2-NN)], which isomerises to afford [PdMe(2)(1-kappa(2)-PN)] (13); at temperatures greater than 10 degrees C complex 13 decomposes rapidly.  相似文献   

16.
[Na(2)(thf)(4)(P(4)Mes(4))] (1) (Mes = 2,4,6-Me(3)C(6)H(2)) reacts with one equivalent of [NiCl(2)(PEt(3))(2)], [NiCl(2)(PMe(2)Ph)(2)], [PdCl(2)(PBu(n)(3))(2)] or [PdCl(2)(PMe(2)Ph)(2)] to give the corresponding nickel(0) and palladium(0) dimesityldiphosphene complexes [Ni(eta(2)-P(2)Mes(2))(PEt(3))(2)] (2), [Ni(eta(2)-P(2)Mes(2))(PMe(2)Ph)(2)] (3), [Pd(eta(2)-P(2)Mes(2))(PBu(n)(3))(2)] (4) and [Pd(eta(2)-P(2)Mes(2))(PMe(2)Ph)(2)] (5), respectively, via a redox reaction. The molecular structures of the diphosphene complexes 2-5 are described.  相似文献   

17.
A series of complexes trans-[PdCl(2)L(2)] has been prepared by the reaction of [PdCl(2)(PhCN)(2)] and/or Na(2)[PdCl(4)] with L = pyridine or quinoline ligands having one or two carboxylic acid groups. These complexes can form 1-D polymers through O-H.O hydrogen bonding between the carboxylic acid groups, as demonstrated by structure determinations of [PdCl(2)(NC(5)H(4)-4-COOH)(2)], [PdCl(2)(NC(5)H(4)-3-COOH)(2)], and [PdCl(2)(2-Ph-NC(9)H(5)-4-COOH)(2)]. In some cases, solvation breaks down the O-H.O hydrogen-bonded structures, as in the structures of [PdCl(2)(NC(5)H(4)-3-COOH)(2)].2DMSO and [PdCl(2)(2-Ph-NC(9)H(5)-4-COOH)(2)].4DMF, while pyridine-2-carboxylic acid underwent deprotonation to give the chelate complex [Pd(NC(5)H(4)-2-C(O)O)(2)]. The complexes trans-[PdCl(2)L(2)], L = pyridine-3,5-dicarboxylic acid or 2,6-dimethyl pyridine-3,5-dicarboxylic acid, self-assembled to give 2-D sheet structures, with hydrogen bonding between the carboxylic acid groups mediated by solvate methanol or water molecules. In the cationic complexes [PdL'(2)L(2)](2+) (L'(2) = Ph(2)PCH(2)PPh(2), Ph(2)P(CH(2))(3)PPh(2); L = pyridine carboxylic acid; anions X(-) = CF(3)SO(3)(-)), hydrogen bonding between the carboxylic acid groups and anions or solvate acetone molecules occurred, and only in one case was a polymeric complex formed by self-assembly.  相似文献   

18.
Reaction of pyrrole-2,5-biscarbonitrile (1) with an excess of (S)- or (R)-valinol in boiling chlorobenzene selectively yielded the two enantiomeric bis(oxazolinyl)pyrroles (S,S)-bis[2-(4,4'-diisopropyl-4,5-dihydrooxazolyl)]pyrrole ("S,S-iproxpH", 2 a) and (R,R)-bis[2-(4,4'-diisopropyl-4,5-dihydrooxazolyl)]pyrrole ("R,R-iproxpH", 2 b), respectively. Lithiation of 2 a and 2 b at -78 degrees C and reaction with an equimolar amount of [PdCl(2)(cod)] (cod=1,5-cyclooctadiene) gave the helical dinuclear palladium complexes (M)-[PdCl(S,S-iproxp)](2) (3 a) and (P)-[PdCl(S,S-iproxp)](2) (3 b) as well as (P)-[PdCl(R,R-iproxp)](2) (4 a) and (M)-[PdCl(R,R-iproxp)](2) (4 b). Reaction of a 1:1 mixture of lithiated 2 a and 2 b with an equimolar amount of [PdCl(2)(cod)] gave a mixture of the homochiral complexes 3 a,b and 4 a,b along with the racemic mixture of the heterochiral complex [Pd(2)Cl(2)(S,S-iproxp)(R,R-iproxp)] (5). The double helical structure as well as the absolute configuration of these neutral dinuclear palladium complexes was confirmed by X-ray diffraction studies of all five complexes. One of the oxazolyl units and the anionic pyrrolide occupy two coordination sites in an approximately square-planar ligand arrangement at the Pd centers whereas the second oxazolyl ring is twisted out of this plane and binds to the second metal center. The heterochiral complex 5 does not possess any element of molecular symmetry. The P-helical complexes 3 b and 4 a display a positive CD at 310 nm and a weaker negative CD at 350 nm, while the compounds possessing M-helicity have the corresponding mirror image CD spectra. Complexes 3 a and 4 a have an additional weak long wavelength CD feature between 380 and 420 nm which is absent in the spectra of 3 b and 4 b. Upon heating a solution of 3 b, interconversion to the diastereomer of opposite helicity 3 a sets in, for which a first-order rate law with respect to the concentration of the complex was established; activation parameters: DeltaH( not equal )=68 kJ mol(-1), DeltaS( not equal )=-99 J mol(-1) K(-1). A cross-over experiment monitored by (1)H NMR spectroscopy also gave the racemate of the mixed-ligand complex 5: (P)-[Pd(2)Cl(2)(S,S-iproxp)(R,R-iproxp)] and (M)-[Pd(2)Cl(2)(S,S-iproxp)(R,R-iproxp)] indicating an intermolecular exchange involving mononuclear [PdCl(iproxp)] complex fragments.  相似文献   

19.
The novel sixteen-electron complex [Ir(Oq)(COD)] (Oq = 8-oxyquinolate; COD = 1,5-cyclooctadiene) adds monodentate phosphines, phosphites or activated olefins irreversibly to give pentacoordinate iridium(I) complexes of the type [Ir(Oq)(COD)L] (L = PPh3, P(OPh)3, maleic anhydride or tetracyano-ethylene). Reaction of [Ir(Oq)(COD)] with some diphosphines leads to substitution products of the general formula [Ir(Oq)(diphos)] (diphos = 1,2-bis(diphenylphosphino)ethane or cis-1,2-bis(diphenylphosphino)ethylene). Carbon monoxide displaces the COD group from the complexes giving either [Ir(Oq)(CO)2] or [Ir(Oq)(CO)L], and the latter undergo oxidative addition reactions with SnCl4, Me3SiCl, Me3SnCl, MeI, allylbromide, PhCOCl, MeCOCl, Cl2, Br2, TlCl3 and HCl leading to novel iridium(III) complexes.  相似文献   

20.
Treatment of the dimetallynes Ar'EEAr' [E = Ge, Sn; Ar' = C(6)H(3)-2,6-(C(6)H(3)-2,6-iPr(2))(2)] with a cyclic olefin-cyclopentadiene (CpH), cyclopentene, 1,4-cyclohexadiene (CHD), or cyclohexene-showed that, with the exception of cyclohexene, they react readily, affording C-H activation at room temperature. Reaction of the digermyne and distannyne with CpH gave the cyclopentadienyl anion, which is bound in a π-fashion to a mononuclear group 14 element center, along with evolution of hydrogen gas. Unusually, the digermyne also reacted with cyclopentene to give the same dehydroaromatization product, formed from triple C-H activation/dehydrogenation. It also was found to react with CHD to give a mixture of (Ar'GeH)(2), benzene, and a new 7-germanorbornadiene species bound to a cyclohex-2-enyl fragment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号