首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Derya Kara 《Talanta》2009,79(2):429-545
Micelle-mediated extraction/preconcentration is incorporated on-line into a flow injection system used to determine low levels of Cd(II), Co(II), Cu(II), Mn(II), Ni(II), Pb(II) and Zn(II) present in various samples. The analyte is complexed with HBDAP (N,N′-bis(2-hydroxy-5-bromo-benzyl)1,2-diaminopropane). Under optimal conditions, a solution of 30% (m/v) NaCl and a sample solution containing 2.5 mL of 1% (m/v) sodium dodecyl sulfate (SDS), 0.5 mL of 1.8 × 10−3 M HBDAP and 2.5 mL of pH 8.5 borate buffer solution in 25 mL were pumped through the cotton filled mini-column; onto which the surfactant-rich phase containing the complex is collected. A solution of 0.5 M HNO3 in 50% acetone is used as the eluent. The limits of detection are (ng mL−1) Cd = 0.39, Cu = 3.2, Co = 7.5, Mn = 3.0, Ni = 3.4, Pb = 17.9 and Zn = 0.89 if the sample is allowed to flow for 30 s, but improved for extended preconcentration periods. Analysis of liquid and solid reference materials showed good agreement with the certified values. Complex formation constants between HBDAP and these metal ions were also determined potentiometrically.  相似文献   

2.
浊点萃取-火焰原子吸收光谱法测定水样中痕量铜的研究   总被引:19,自引:0,他引:19  
提出了浊点萃取火焰原子吸收光谱法测定痕量铜的新方法。详细探讨了溶液pH,试剂浓度等实验条件对浊点萃取及测定灵敏度的影响,在最佳下,富集50mL样品溶液,用火焰原子吸收光谱法测定,铜的检测限为0.35μg/L,铜的富集倍率为71倍。方法用于自来水、河水及海水中痕量铜的测定。  相似文献   

3.
In this study, flow injection-cloud point extraction (FI-CPE) of iron and copper in food samples by flame atomic absorption spectrometric determination was described. Triton X-114 non-ionic surfactant and Eriochrome Cyanine R (ECR) have been used as an extraction medium and a chelating agent, respectively. The amounts of Triton X-114, ECR and the pH value necessary for extraction were carefully optimized. In addition, several parameters of the FI-CPE system, including sample loading rate, column dimension, type of packing material, eluent flow rate were investigated and analytical characteristics of the method were evaluated. Under optimum conditions, detection limits of 0.33 ng/mL and 0.57 ng/mL and quantification limits of 1.1 ng/mL and 1.9 ng/mL for iron and copper along with enrichment factors of 141 and 99 were obtained, respectively. The calibration was linear over the range 1.5-25 ng/mL and 1.0-35 ng/mL for iron and copper, respectively. The proposed CPE technique has been successfully applied for the determination of iron and copper ions in certified reference materials (NCS DC 73349—bush, branches and leaves; and TM-23.2—fortified water), water samples (mineral and sea water) and food samples (vegetables, bread and hazelnut) with high efficiency.  相似文献   

4.
Graphene, a novel class of carbon nanostructures, has great promise for use as sorbent materials because of its ultrahigh specific surface area. A new method using a column packed with graphene as sorbent was developed for the preconcentration of trace amounts of lead (Pb) using dithizone as chelating reagent prior to its determination by flame atomic absorption spectrometry. Some effective parameters on the extraction and complex formation were selected and optimized. Under optimum conditions, the calibration graph was linear in the concentration range of 10.0–600.0 μg L−1 with a detection limit of 0.61 μg L−1. The relative standard deviation for ten replicate measurements of 20.0 and 400.0 μg L−1 of Pb were 3.56 and 3.25%, respectively. Comparative studies showed that graphene is superior to other adsorbents including C18 silica, graphitic carbon, and single- and multi-walled carbon nanotubes for the extraction of Pb. The proposed method was successfully applied in the analysis of environmental water and vegetable samples. Good spiked recoveries over the range of 95.3–100.4% were obtained. This work not only proposes a useful method for sample preconcentration, but also reveals the great potential of graphene as an excellent sorbent material in analytical processes.  相似文献   

5.
Yu HM  Song H  Chen ML 《Talanta》2011,85(1):625-630
A novel adsorbent-silica gel bound dithizone (H2Dz-SG) was prepared and used as solid-phase extraction of copper from complex matrix. The H2Dz-SG is investigated by means of FT-IR spectra and the SEM images, demonstrating the bonding of dithizone. The H2Dz-SG quantitatively adsorb copper ions, and the retained copper is afterwards collected by elution of 10% (v/v) nitric acid. An on-line flow injection solid-phase extraction procedure was developed for trace copper separation and preconcentration with detection by flame atomic spectrometry. By loading 5.4 mL of sample solution, a liner range of 0.5-120 μg L−1, an enrichment factor of 42.6, a detection limit of 0.2 μg L−1 and a precision of 1.7% RSD at the 40 μg L−1 level (n = 11) were obtained, along with a sampling frequency of 47 h−1. The dynamic sorption capacity of H2Dz-SG to Cu2+ was 0.76 mg g−1. The accuracy of the proposed procedure was evaluated by determination of copper in reference water sample. The potential applications of the procedure for extraction of trace copper were successfully accomplished in water samples (tap, rain, snow, sea and river). The spiking recoveries within 91-107% are achieved.  相似文献   

6.
Ibrahim S.I. Adam 《Talanta》2009,77(3):1160-1164
A newly simple flow injection wetting-film extraction system coupled to flame atomic absorption spectrometry (FAAS) has been developed for trace amount of cadmium determination. The sample was mixed on-line with sodium diethyl dithiocarbamate and the produced non-charged Cd(II)-diethyl dithiocarbamate (DDTC) chelate complex was extracted on the thin film of diisobutyl ketone (DIBK) on the inner wall of the PTFE extraction coil. The wetting-film with the extracted analyte was then eluted by a segment of the cover solvent, and transported directly to the FAAS for evaluation. All the important chemical and flow parameters were optimized. Under the optimized conditions an enhancement factor of 35, a sample frequency of 22 h−1 and a detection limit of cL = 0.7 μg l−1 Cd(II) were obtained for 60 s preconcentration time. The calibration curve was linear over the concentration range 1.5-45.0 μg l−1 Cd(II) and the relative standard deviation, R.S.D. (n = 10) was 3.9%, at 10.0 μg l−1 concentration level. The developed method was successfully applied to cadmium determination in a variety of environmental water samples as well as waste-water sample.  相似文献   

7.
Using octadecyl functional groups (C18) bonded to silica gel as sorbent and methanol as eluent, the flow injection sorbent extraction features of dialkyldithiophosphates (RO)2P(S)S as the chelating agent for cadmium, copper and lead was investigated in respect of the effects of pH, alkyl substituent group, reagent concentration and masking agent, with flame atomic absorption spectrometric detection. The elements are quantitatively extracted with the short-alkyl-chain reagents (R up to propyl) in acidic medium. The extractability decreases with the number of carbon atoms in the alkyl groups of the reagents and with the reagent concentration when the alkyl groups are larger than butyl, but masking agents increase the extractability. An explanation proposed for this effect is the formation of polynuclear chelates. Diethyldithiophosphate can be used for the selective determination of cadmium, copper and lead in digested solid environmental samples. With 20 s sample loading at 8.7 ml min−1, the enhancement factors are 35 for cadmium and copper or 26 for lead; the detection limits (3σ) are 0.8, 1.4 and 10.0 μg 1−1 for cadmium, copper and lead, respectively.  相似文献   

8.
A calibration method has been developed which is realised in the flow injection analysis (FIA) by the gradient technique. According to this method two transient peaks, one for a sample and the other for a sample with standard addition, are recorded and compared point by point in the entire defined time range. The analytical result is estimated on the basis of information gained about the local analyte concentrations in the sample zone. The method allows the results to be reliable when both the non-linear calibration dependence and the interference effect occur. As an example, calcium in synthetic samples containing silicon, phosphate, aluminium, vanadium and titanium, and also in iron ore sample, were determined by flame atomic absorption spectrometry (FAAS). It has been proved, that the method can be effective in overcoming even extremely strong interferences, providing analytical results with average accuracy equal to ca. 5% and with precision 2–3 times inferior to that obtained by conventional FI calibration.  相似文献   

9.
In this work, bamboo charcoal (BC) was used as a sorbent for on-line solid phase extraction (SPE) coupling with flame atomic absorption spectrometry (AAS) for trace copper and zinc determination in environmental and biological samples. Under the optimum pH of 5.5 (for Zn) and 7.0 (for Cu), trace copper and zinc were effectively adsorbed on the microcolumn and the retained cations were efficiently eluted with HCl or HNO3 with an appropriate concentration and flow rate for on-line AAS determination. With a sample loading time of 60 s at a sample flow rate of 7.6 mL min?1, the enhancement factors of 39 (for Cu) and 30 (for Zn) and detection limits (3σ) of 0.60 µg L?1 (for Cu) and 0.36 µg L?1 (for Zn), respectively, were achieved. The sample throughput was 45 h?1. At the level of 20 µg L?1of Cu(II) and Zn(II), the precision (RSD, n?=?11) were found to be 0.26% and 1.6%, respectively. The proposed method has been successfully applied to the determination of copper and zinc in environmental and biological samples.  相似文献   

10.
A simple and inexpensive procedure is proposed for the extension of the dynamic range of flame atomic absorption spectrometry measurements using on-line dilution. The proposed methodology is based on the use of a manifold with two coupled dilution chambers and a zone injection system. The samples are prediluted in a closed system which includes a variable-volume mixing chamber (10–120 ml) and two injection valves. The samples are injected through one of these valves, and the other is employed to take 100 μl of prediluted samples which are then passed through a new dilution chamber (volume 1–10 ml) and aspirated by the nebulizer of the instrument. A third injection valve mounted in the last part of the manifold is used for the direct injection of diluted standard solutions. Various dilution factors are obtained, ranging from 2 to 130 000 times, thus extending the analytical range of copper determination to more than 100 000 mg l−1.  相似文献   

11.
Continuous ultrasound-assisted extraction has been coupled with preconcentration and flame atomic absorption spectrometry for the determination of cadmium and lead in mussel samples. Experimental designs were used for the optimisation of the leaching and preconcentration steps. The use of diluted nitric acid as extractant in the continuous mode at a flow rate of 3.5 ml min−1 and room temperature was sufficient for quantitative extraction of these trace metals. A minicolumn containing a chelating resin (Chelite P, with aminomethylphosphoric acid groups) was proved as an excellent material for the quantitative preconcentration of cadmium and lead prior to their flame atomic absorption detection. A flow injection manifold was used as interface for coupling the three analytical steps, which allowed the automation of the whole analytical process. A good precision of the whole procedure (2.0 and 2.3%), high enrichment factors (20.5 and 11.8) and a detection limit of 0.011 and 0.25 μg g−1 for cadmium and lead, respectively, were obtained for 80 mg of sample. The sample throughputs were ca. 16 and 14 samples h−1 for cadmium and lead, respectively. The accuracy of the analytical procedures was verified by using a standard reference material (BCR 278-R, mussel tissue) and the results were in good agreement with the certified values. The method was successfully applied to the determination of trace amounts of cadmium and lead in mussel samples from the coast of Galicia (NW, Spain).  相似文献   

12.
A novel flow injection (FI) on-line displacement solid phase extraction preconcentration and/or separation method coupled with FAAS in order to minimize interference from other metals was developed for trace silver determination. The proposed method involved the on-line formation and subsequently pre-sorption of lead diethyldithiocarbamate (Pb-DDTC) into a column packed with PTFE-turnings. The preconcentration and/or separation of the Ag(I) took place through a displacement reaction between Ag(I) and Pb(II) of the pre-sorbed Pb-DDTC. Finally, the retained analyte was eluted with isobutyl methyl ketone (IBMK) and delivered directly to nebulizer for measuring. Interference from co-existing ions with lower DDTC complex stability in comparison with Pb-DDTC, was eliminated without need for any masking reagent. With 120 s of preconcentration time at a sample flow rate of 7.6 mL min−1, an enhancement factor of 110 and a detection limit (3 s) of 0.2 μg L−1 were obtained. The precision (RSD, n = 10) was 3.1% at the 10 μg L−1 level. The developed method was successfully applied to trace silver determination in a variety of environmental water samples and certified reference material.  相似文献   

13.
The potential of multiwalled carbon nanotubes (MWNTs) as solid-phase extraction adsorbent for the separation and preconcentration of gold has been investigated. Gold could be adsorbed quantitatively on MWNTs in the pH range of 1–6, and then eluted completely with 2 mL of 3% thiourea in 1 mol L− 1 HCl solution at a flow rate of 0.5 mL min− 1. A new method using a microcolumn packed with MWNTs as sorbent has been developed for the preconcentration of trace amount of Au prior to its determination by flame atomic absorption spectrometry. Parameters influencing the preconcentration of Au, such as pH of the sample, sample flow rate and volume, elution solution and interfering ions, have been examined and optimized. Under the optimum experimental conditions, the detection limit of this method for Au was 0.15 µg L− 1 with an enrichment factor of 75, and the relative standard deviation (R.S.D) was 3.1% at the 100 µg L− 1 Au level. The method has been applied for the determination of trace amount of Au in geological and water samples with satisfactory results.  相似文献   

14.
A simple, rapid and inexpensive solidified floating organic drop microextraction (SFODME) and flow injection flame atomic absorption spectrometric determination (FI-FAAS) method for copper were developed. 3-amino-7-dimethylamino-2-methylphenazine (Neutral red, NR) was used as the complexing agent. Several factors affecting the microextraction efficiency, such as, pH, NR and sodium dodecylbenzenesulfonate (SDBS) concentration, extraction time, stirring rate, and temperature were investigated and optimized. Under optimized experimental conditions an enrichment factor of 541 was obtained for 100 mL of sample solution. The calibration graph was linear in the range of 0.5–20.0 ng mL− 1 and the limit of detection (3 s) was 0.18 ng mL− 1, the limit of quantification (10 s) was 0.58 ng mL− 1. The relative standard deviation (RSD) for 10 replicate measurements of 10 ng mL− 1 copper was 2.7%. The developed method was successfully applied to the extraction and determination of copper in different certified reference materials (Estuarine water, Slew 3 and fortified water, TM 23.2) and real water samples and satisfactory results were obtained.  相似文献   

15.
Cloud point extraction (CPE) has been used for the simultaneous pre-concentration of cadmium, copper, lead and zinc after the formation of a complex with 1-(2-thiazolylazo)-2-naphthol (TAN), and later analysis by flame atomic absorption spectrometry (FAAS) using octylphenoxypolyethoxyethanol (Triton X-114) as surfactant. The chemical variables affecting the separation phase and the viscosity affecting the detection process were optimized. At pH 8.6, pre-concentration of only 50 ml of sample in the presence of 0.05% Triton X-114 and 2×10−5 mol l−1 TAN permitted the detection of 0.099, 0.27, 1.1 and 0.095 ng ml−1 cadmium, copper, lead and zinc, respectively. The enhancement factors were 57.7, 64.3, 55.6 and 63.7 for cadmium, copper, lead and zinc, respectively. The proposed method has been applied to the determination of cadmium, copper, lead and zinc in water samples and a standard reference material (SRM).  相似文献   

16.
Rojas FS  Ojeda CB  Pavón JM 《Talanta》2006,70(5):979-983
A flow injection (FI) system was used to develop an efficient on-line sorbent extraction preconcentration system for palladium by graphite furnace atomic absorption spectrometry (GFAAS). The investigated metal was preconcentrated on a microcolumn packed with 1,5-bis(di-2-pyridyl)methylene thiocarbohydrazide immobilized on silica gel (DPTH-gel). The palladium is eluted with 40 μl of HCl 4 M and directly introduced into the graphite furnace. The detection limit for palladium under the optimum conditions was 0.4 ng ml−1. This procedure was employed to determine palladium in different samples.  相似文献   

17.
The paper reports preparation and analytical features of a new Cu(II)-imprinted polymer, based on salen-OMe ligand 2,2′-[ethane-1,2-diylbis(nitrilo(E)methylylidene)]bis(6-allyl-4-methoxyphenol) and styrene-divinylbenzene matrix, as well as its application to on-line preconcentration and flame atomic absorption determination of copper. Sorbent beads (average diameter of 60-80 µm) were obtained using suspension polymerization technique and employed as a column filling. Copper sorption was the most effective at pH 6.8, whereas the highest elution effectiveness was observed when 0.5% HNO3 was applied. The sorbent exhibited good long-term stability and acid resistance. Enrichment factor (EF) of 12 was found for 60 s loading time and loading flow rate of 4 mL min− 1. EF value may be further increased by expanding the loading time and/or flow rate. Batch sorbent capacity in optimal pH conditions was found to be 0.16 mmol g− 1 (9.55 mg g− 1) of a dry polymer. Calcium(II) turned out to be the only significant interferent. Cadmium(II), silver(I), nickel(II), zinc(II) in concentrations lower than about 1 mg L− 1 did not disturb copper(II) preconcentration. Different calibration methods such as: set of standards method (SSM), standard addition method (SAM) and combinatory calibration method (CCM) were employed for copper(II) determination in tap water, spring mineral water and certified reference material. Analysis of EU-H-3 reference material confirmed good accuracy of the proposed method. Relative standard deviation (RSD) was 3.2 for standard addition method and 2.8% for set of standard calibration method. Detection limit for sample consumption 16 mL was 1.03 and 1.07 µgL-1 respectively.  相似文献   

18.
A column, solid-phase extraction (SPE), preconcentration method was developed for determination of Bi, Cd, Co, Cu, Fe, Ni and Pb ions in drinking water, sea water and sediment samples by flame atomic absorption spectrometry. The procedure is based on retention of analytes in the form of pyrrolidine dithiocarbamate complexes on a short column of Chromosorb-102 resin from buffered sample solution and then their elution from the resin column with acetone. Several parameters, such as pH of the sample solution, amount of Chromosorb-102 resin, amount of ligand, volume of sample and eluent, type of eluent, flow rates of sample and eluent, governing the efficiency and throughput of the method were evaluated. The effects of divers ions on the preconcentration were also investigated. The recoveries were >95%. The developed method was applied to the determination of trace metal ions in drinking water, sea water and sediment samples, with satisfactory results. The 3σ detection limits for Cd, Cu, Fe, Ni and Pb and were found to be as 0.10, 0.44, 11, 3.6, and 10 μg l−1, respectively. The relative standard deviation of the determination was <10%. The procedure was validated by the analysis of a standard reference material sediment (GBW 07309) and by use of a method based on coprecipitation.  相似文献   

19.
The dispersive liquid-liquid microextraction (DLLME) was combined with the flame atomic absorption spectrometry (FAAS) for determination of lead in the water samples. Diethyldithiophosphoric acid (DDTP), carbon tetrachloride and methanol were used as chelating agent, extraction solvent and disperser solvent, respectively. A new FAAS sample introduction system was employed for the microvolume nebulization of the non-flammable chlorinated organic extracts. Injection of 20 μL volumes of the organic extract into an air-acetylene flame provided very sensitive spike-like and reproducible signals.Some effective parameters on the microextraction and the complex formation were selected and optimized. These parameters include extraction and disperser solvent type as well as their volume, extraction time, salt effect, pH and amount of the chelating agent. Under the optimized conditions, the enrichment factor of 450 was obtained from a sample volume of 25.0 mL. The enhancement factor, calculated as the ratio of the slopes of the calibration graphs with and without preconcentration, which was about 1000. The calibration graph was linear in the range of 1-70 μg L−1 with a detection limit of 0.5 μg L−1. The relative standard deviation (R.S.D.) for seven replicate measurements of 5.0 and 50 μg L−1 of lead were 3.8 and 2.0%, respectively. The relative recoveries of lead in tap, well, river and seawater samples at the spiking level of 20 μg L−1 ranged from 93.8 to 106.2%. The characteristics of the proposed method were compared with those of the liquid-liquid extraction (LLE), cloud point extraction (CPE), on-line and off-line solid-phase extraction (SPE) as well as co-precipitation, based on bibliographic data. Operation simplicity, rapidity, low cost, high enrichment factor, good repeatability, and low consumption of the extraction solvent at a microliter level are the main advantages of the proposed method.  相似文献   

20.
In this work, a fully automated flow system exploiting the advantages of the association of multi-pumping, multicommutation, binary sampling and merging zones, to accomplish the sequential determination of copper in serum and urine by flame atomic absorption spectrometry, is described. The developed flow system allowed multiple tasks, such as serum samples preparation (samples and standard solutions viscosity adjustment), serum copper (SCu) measurement, urine copper (UCu) pre-concentration and its subsequent elution and measurement, to be carried out sequentially. The implemented flow manifold presented a modular configuration consisting on two quasi-independent modules, each one accountable for a specific sample manipulation and whose combined operation under computer control enabled the determination of copper in a wide concentrations range.Once optimised and with a sample consumption of about 0.250 mL of serum and 7 mL of urine, the developed flow system allowed linear calibration plots up to 5 mg L−1 with a detection limit of 0.035 mg L−1 for SCu and linear calibration plots up to 300 μg L−1 with a detection limit of 0.67 μg L−1 for UCu. The sampling rate varied according to the module employed and was about 360 determinations h−1 (SCu module), 12 determinations h−1 (UCu module) or 24 determinations h−1 (12 urine and 12 serum samples; UCu and SCu modules simultaneously). Repeatability studies (R.S.D.%, n = 10) showed good precision for UCu at concentrations of 25 μg L−1 (2.54%), 50 μg L−1 (0.90%) and 100 μg L−1 (1.62%) as well as for SCu at concentrations of 0.25 mg L−1 (8.11%), 1 mg L−1 (3.11%) and 5 mg L−1 (0.90%). A comparative evaluation showed a good agreement between the results obtained in the analysis of UCu and SCu (n = 18) by both the developed methodology and the reference procedures. Accuracy was further evaluated by means of the analysis of reference samples (Seronorm™ Trace Elements Urine and Seronorm™ Trace Elements Serum) and the obtained results complied with the certified values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号