首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
球形弹丸超高速正撞击薄板破碎状态实验研究   总被引:2,自引:0,他引:2  
利用闪光X射线照相系统拍摄了直径6.35 mm的铝球以2.23~5.26 km/s的速度正撞击薄铝板的过程并对该过程进行了分析,研究了弹丸从塑性变形到完全破碎的发展过程。给出了球形弹丸内部应力波传播的定性描述,提出弹丸形态变化包括3个阶段。在塑性变形阶段,弹丸变形随撞击速度和板厚的增大而增大;弹丸主体部分发生临界破碎时的撞击速度随薄板厚度增大而减小,当板厚超过一定值时,该速度基本相同,不受板厚影响;在完全破碎阶段,随撞击速度的增加,弹丸主体部分材料的径向速度增大,碎片尺寸减小,数量增多。  相似文献   

2.
提出了一种基于节点分离概念的Lagrange有限元冲击破碎分析的算法,采用节点分离技术实现 了网格断裂,并用畸变侵蚀技术处理严重畸变单元。利用C++编程实现了节点分离计算模型的创建和畸变 侵蚀,结合LS-dyna的重启动分析功能,编程调用LS-dyna求解器以及畸变侵蚀程序实现了破碎分析。分别 用节点分离的Lagrange有限元算法、SPH 无网格算法对超高速碰撞问题进行了数值模拟,并与文献中的实 验结果和Euler有限元数值模拟结果进行了对比。结果表明,节点分离算法具有计算速度快、数值稳定、边界 明确等优点,能准确有效模拟超高速碰撞问题。  相似文献   

3.
宋光明  李明  武强  龚自正  张品亮  曹燕 《爆炸与冲击》2021,41(2):021405-1-021405-12
碎片云特性是影响空间碎片防护结构防护性能的重要因素。通过实验对比了相同面密度波阻抗梯度材料、铝合金材料的碎片云特性,并借助数值模拟进行了更深入的研究,结果表明,当弹丸分别撞击波阻抗梯度材料、铝合金材料时,碎片云结构中弹丸的破碎特征明显不同。撞击波阻抗梯度材料时,弹丸头部破碎更加充分,弹丸侧向扩展程度提高;在高速段(6.5 km/s),受阻抗梯度及材料熔化效应的共同作用,波阻抗梯度材料碎片云头部出现分层现象。研究结果表明,超高速撞击波阻抗梯度材料碎片云特性的变化是其防护性能优于相同面密度铝合金的重要因素之一。  相似文献   

4.
防护屏穿孔直径在Whipple防护结构的超高速撞击实验中易于测量,是检验超高速撞击实验及数值模拟有效性的重要参数.本文分别采用超高速撞击实验、数值模拟及经验公式对铝合金Whipple防护结构的防护屏穿孔进行了研究.数值模拟结果与实验结果吻合很好,说明本文物理建模及参数的选取是合理的,同时也验证了数值模拟方法的正确性及有效性;使用经验公式进行了对比计算,结果表明Maiden C J给出的公式具有很好的普适性.最后利用数值模拟研究不同材料对超高速撞击防护屏穿孔的影响.合理的应用经验公式及数值模拟可以更加快捷、有效地开展超高速撞击实验研究.  相似文献   

5.
提出了超高速碰撞研究的工程算法模型,并采用该模型来模拟弹丸超高速撞击薄板形成的碎片云对后靶的破坏毁伤情况,与超高速碰撞实验相比较,数值模拟结果与实验结果较为一致。采用的工程算法模型很好地描述了超高速碰撞现象,定性地给出了碎片云的毁伤潜力。  相似文献   

6.
非球弹丸超高速撞击航天器防护结构数值模拟   总被引:2,自引:0,他引:2  
采用AUTODYN软件对非球弹丸超高速正撞击航天器单防护屏防护结构进行了数值模拟,给出了2维及3维模拟的结果。研究了在相同质量和速度的条件下,不同形状弹丸长径比、撞击方向等对超高速撞击防护结构所产生碎片云特性及舱壁损伤尺寸的影响,并与球形弹丸撞击所产生的碎片云及舱壁损伤进行了比较。结果表明:弹丸的长径比越大,弹丸的穿孔能力越强;非球弹丸的撞击方向不同,所产生的碎片云形状、质量分布、破碎的程度和穿孔的能力是不同的。  相似文献   

7.
光滑粒子流体动力学方法(smoothed particle hydrodynamics,SPH)被广泛应用于薄板超高速撞击碎片云的数值模拟。利用AUTODYN软件中的SPH模块,考察了无失效模型、Grady失效模型和最大拉应力失效模型3种方案下碎片云模拟结果,发现无失效模型时计算结果及材料表现与实验明显不符;相比于Grady失效模型,最大拉应力失效模型下材料更难失效,将小幅度减弱碎片云扩散程度,碎片总数减少,粒子聚集产生更大碎片,碎片云侵彻性能提高,增大模型失效阈值亦有上述表现。相比而言,Grady失效模型计算结果更符合实验,但2种失效模型间差异与撞击工况相关,材料破碎越充分差异越小。  相似文献   

8.
弹丸高速撞击压力容器损伤实验研究   总被引:1,自引:0,他引:1  
张伟  管公顺  哈跃  庞宝君 《实验力学》2004,19(2):229-235
微流星体及空间碎片的高速撞击威胁着航天器的安全运行。而压力容器是航天器上受微流星体及空间碎片撞击威胁最大的关键部件之一。对压力容器的高速撞击能导致其发生破裂而过早终止航天器的使命。本文的目的是通过实验研究,确定高速撞击条件下压力容器发生具有撕裂的简单穿孔和裂纹失稳破裂的界限。实验样件选择6063铝合金管焊接制成。高速撞击实验采用铝柱状弹丸和球形弹丸在3km/s左右的速度下正撞击铝压力容器,铝压力容器的压力从0~30Bar变化来探索获得不同损伤形式的压力条件。给出了铝压力容器前、后壁从穿孔到裂纹失稳破裂的实验结果。未防护充水铝压力容器的主要损伤是其前壁的裂纹失稳破裂。而防护充水铝压力容器在前璧未穿孔时未发生破裂。未防护充气压力容器在给定的实验条件下前璧未发生破裂而后璧发生破裂。防护充气压力容器在小防护间距时前璧发生破裂。  相似文献   

9.
安凯 《爆炸与冲击》2014,34(4):404-408
为了辨识碎片云头部形状,提出了对其形状进行边缘提取、利用二次函数进行边缘最优拟合、并根据拟合结果作出判断的方法。给出了二次函数对边缘的最优拟合算法。对来自不同文献的4幅碎片云图像,提取了他们头部的边缘曲线,进行了最优拟合和形状辨识。辨识结果显示,3幅图像的头部形状为抛物线,1幅图像的头部形状为椭圆。辨识结果表明,至少有一部分碎片云的头部形状是旋转抛物面, 而不是椭球面。  相似文献   

10.
通过高速撞击实验,探讨了采用小尺寸防护板的可行性。实验中采用的Whipple结构由尺寸变化的1 mm厚防护板(前板)和尺寸固定的3 mm厚舱壁板(后板)组成,防护板与舱壁板间隔10 cm。防护板为边长分别为8、12、16和20 cm的方形2A12铝合金板,舱壁板为边长为20 cm的方形5A06铝合金板。实验过程中均采用直径为4 mm的铝合金球形弹丸,撞击速度为1.45~1.71 km/s。实验结果表明:Whipple防护结构在舱壁板被击穿的概率大于0.8的条件下和击穿概率为0的条件下的极限速度以及舱壁板临界击穿条件下的速度都与防护板尺寸无关;并且,防护板前后表面击穿孔的直径及击穿孔侧壁的倾斜角也与防护板尺寸无关;但是,在速度相同的条件下随着板尺寸的增大,防护板板面的最大挠度增大,而且,防护板挠曲面的凸凹方向也由单一的凹向变成凸凹方向交替出现;随着速度的增加和板尺寸的增大,防护板最大挠度的增量减小。  相似文献   

11.

引入颗粒动力学理论(拟流体模型)建立了适用于超高速碰撞的SPH新方法。将超高速碰撞中处于损伤状态的碎片等效为拟流体,在描述其运动过程中引入了碎片间相互作用和气体相对碎片的作用。采用该方法对球形弹丸超高速碰撞薄板形成碎片云的过程进行了数值模拟,得到了弹坑直径、外泡碎片云和内核碎片云的形状、分布,并与使用传统SPH方法、自适应光滑粒子流体动力学(ASPH)方法的模拟结果进行对比,结果显示:新方法在内核碎片云形状和分布上计算结果更加准确。同时对Whipple屏超高速碰撞问题进行了研究,分析了不同撞击速度下防护屏弹坑尺寸及舱壁损伤特性等特性,计算结果与实验吻合较好且符合Whipple防护结构的典型撞击极限曲线。

  相似文献   

12.
动能杆斜撞击靶板后效破片描述研究   总被引:1,自引:0,他引:1  
针对动能杆式弹大倾角斜撞击靶板产生的靶后破片,建立了其初始破片云数学描述模型,并在此基础上对斜撞击靶后破片特征分布进行了建模。仿真结果与工程试验结果的比较表明,该模型具有较高的可信度。  相似文献   

13.
随着空间碎片的日益增多,在轨运行航天器的高压太阳电池阵受到空间碎片撞击的影响需要得到评估。通过二级轻气炮加载弹丸,应用Langmuir三探针和电流、电压探针对空间用硅太阳电池阵在不同碰撞速度下产生的放电效应进行了实验研究。结果表明,空间碎片撞击太阳电池阵会诱发产生放电现象,撞击过程产生的高浓度等离子体是放电现象产生的诱因,且碰撞速度越大,对太阳电池阵产生的损伤越严重。  相似文献   

14.
光滑粒子模拟方法在超高速碰撞现象中的应用   总被引:3,自引:0,他引:3  
简要介绍了基于黎曼解的光滑粒子法,并将改进的SPH方法应用于超高速碰撞,对二维轴对称条件下的弹丸超高速碰撞薄板问题进行了数值模拟,研究了靶板厚度、弹丸速度、弹丸形状等因素对形成碎片云的影响。通过与实验数据比较,该算法模拟的碎片云的形状及特征与实验相吻合,验证了光滑粒子法对冲击动力学问题数值模拟的有效性。  相似文献   

15.
针对超高速碰撞产生的瞬态等离子体的特点,利用建立的扫描朗缪尔探针、朗缪尔三探针诊断系 统及线圈系统,测量了超高速碰撞喷出物产生的膨胀等离子体云中等离子体的特征参量和磁感应强度。在传 感器布局和方位角固定的前提下,进行了2种碰撞速度、相同入射角度条件下2024-T4铝弹丸超高速碰撞 2024-T4铝靶产生的膨胀等离子体云电磁特性的实验室测量。实验结果表明,碰撞产生的等离子体的平均电 子温度为0.4~0.9eV,电子密度在1012cm-3量级,线圈的磁感应强度幅值为10~20nT 。通过数据处理,获 得了2种实验条件下整个物理过程在给定探针、线圈位置处等离子体的电子温度、电子密度和磁感应强度与 碰撞速度的关系,并对扫描朗缪尔探针和朗缪尔三探针的测量结果进行了比较。  相似文献   

16.
廖祜明  黎波  樊江  焦立新  于帅超  林健宇  裴晓阳 《爆炸与冲击》2022,42(10):103301-1-103301-11

空间碎片超高速撞击是典型的高温、高压、高应变率的极限力学问题,涉及材料复杂的动态响应,对传统的数值方法提出了巨大挑战。最优运输无网格(OTM)方法通过有机结合最优运输时间积分理论、局部最大熵无网格近似、物质点抽样、基于物理的裂纹扩展算法以及大规模并行计算策略,克服了传统数值方法瓶颈,在理论上保证了不同形式能量耗散的自主耦合分配,为超高速撞击仿真预测提供了高效的解决方案。采用基于OTM方法自主研发的极限力学仿真软件ESCAAS,对不同质量(3、10 g)的铜飞片以不同撞击角度(5.4°、11.7°)和不同撞击速度(5.55、5.12 km/s)撞击铝合金靶板的过程进行数值模拟,获得碎片云的形貌、靶板穿孔孔径等结果,与实验测量数据吻合良好,显示出OTM方法及ESCAAS软件可以作为超高速撞击的有力数值分析手段。

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号