首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ivanov SS  Vitanov NV 《Optics letters》2011,36(7):1275-1277
A vital requirement for a quantum computer is the ability to locally address, with high fidelity, any of its qubits without affecting their neighbors. We propose an addressing method using composite sequences of laser pulses that dramatically reduces the addressing error in a lattice of closely spaced atoms or ions and at the same time significantly enhances the robustness of qubit manipulations. To this end, we design novel (to our knowledge) high-fidelity composite pulses for the most important single-qubit operations. In principle, this method allows one to beat the diffraction limit, for only atoms situated in a small spatial region around the center of the laser beam are excited, well within the laser beam waist.  相似文献   

2.
Md. Mijanur Rahman 《Optik》2010,121(18):1649-1653
A cavity-assisted Raman process can initialize the inter-conversion of stationary spin qubits and flying photon qubits in quantum channels. The qubit transmission essentially requires the implementation of special laser fields to excite atoms at the transmitting node of the quantum cavity. The flying qubit is ultimately absorbed at the receiving node of the channel to regenerate the original spin state of the nanodot. The present paper deals with the phenomena involved in such nanophotonic waveguidance by the process of rigorous simulation, and it is reported that the results obtained by implementing suitable transmission protocol reflect well the reliable transfer/entanglement of the quantum states of the nanodot qubit.  相似文献   

3.
《Physics letters. A》2020,384(17):126352
The development of the first generation of commercial quantum computers is based on superconductive qubits and trapped ions respectively. Other technologies such as semiconductor quantum dots, neutral ions and photons could in principle provide an alternative to achieve comparable results in the medium term. It is relevant to evaluate if one or more of them is potentially more effective to address scalability to millions of qubits in the long term, in view of creating a universal quantum computer. We review an all-electrical silicon spin qubit, that is the double quantum dot hybrid qubit, a quantum technology which relies on both solid theoretical grounding on one side, and massive fabrication technology of nanometric scale devices by the existing silicon supply chain on the other.  相似文献   

4.
We propose computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits. We describe a concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit. Specifically, this device measures the joint (fermion) parity of these two different qubits by using the Aharonov-Casher effect in conjunction with an ancilliary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows one to produce states in which the topological and conventional qubits are maximally entangled and to teleport quantum states between the topological and conventional quantum systems.  相似文献   

5.
We present a new readout method for a superconducting flux qubit, based on the measurement of the Josephson inductance of a superconducting quantum interference device that is inductively coupled to the qubit. The intrinsic flux detection efficiency and backaction are suitable for a fast and nondestructive determination of the quantum state of the qubit, as needed for readout of multiple qubits in a quantum computer. We performed spectroscopy of a flux qubit and we measured relaxation times of the order of 80 micros.  相似文献   

6.
We propose to implement a quantum switch scheme for coupling highly detuned superconducting qubits connected by a gap-tunable bridge qubit. By modulating the frequency of the bridge qubit, it can be used as a coupler to switch on/off and adjust the coupling strength between the initially non-interaction qubits. It is shown that the proposals of quantum information transfer and quantum entangled gate between two highly detuned qubits can be implemented with high fidelity. Moreover, we extend the case of coupling the switch to multiple qubits for the generation of W states. The advantages of our scheme are that it eliminates the need for tuning the gaps of the qubits and the cross-talk interaction is greatly suppressed. The influence of decoherence and parameter variation is also investigated by numerical simulation, which suggests that the present scheme is feasible in current experiment.  相似文献   

7.
The spin qubit in quantum dots is one of the leading platforms for quantum computation.A crucial requirement for scalable quantum information processing is the high efficient measurement.Here we analyze the measurement process of a quantum-dot spin qubit coupled to a superconducting transmission line resonator.Especially,the phase shift of the resonator is sensitive to the spin states and the gate operations.The response of the resonator can be used to measure the spin qubit efficiently,which can be extend to read out the multiple spin qubits in a scalable solid-state quantum processor.  相似文献   

8.
We present the construction of quantum error-locating(QEL) codes based on classical error-locating(EL)codes. Similar to classical EL codes, QEL codes lie midway between quantum error-correcting codes and quantum errordetecting codes. Then QEL codes can locate qubit errors within one sub-block of the received qubit symbols but do not need to determine the exact locations of the erroneous qubits. We show that, an e-error-locating code derived from an arbitrary binary cyclic code with generator polynomial g(x), can lead to a QEL code with e error-locating abilities, only if g(x) does not contain the(1 + x)-factor.  相似文献   

9.
The effectiveness of decoherence suppression schemes is explored using quantum bits (qubits) stored in Li np Rydberg states. Following laser excitation, pulsed electric fields coherently control the electronic spin-orbit coupling, facilitating qubit creation, manipulation, and measurement. Spin-orbit coupling creates an approximate decoherence-free subspace for extending qubit storage times. However, sequences of fast NOT operations are found to be substantially more effective for preserving coherence.  相似文献   

10.
Measurements of three-junction flux qubits, both single flux qubits and coupled flux qubits, using a coupled direct current superconducting quantum interference device (dc-SQUID) for readout are reported. The measurement procedure is described in detail. We performed spectroscopy measurements and coherent manipulations of the qubit states on a single flux qubit, demonstrating quantum energy levels and Rabi oscillations, with Rabi oscillation decay time TRabi =- 78 ns and energy relaxation time T~ = 315 ns. We found that the value of TRabi depends strongly on the mutual inductance between the qubit and the magnetic coil. We also performed spectroscopy measurements on inductively coupled flux qubits.  相似文献   

11.
The interaction of solid-state qubits with environmental degrees of freedom strongly affects the qubit dynamics, and leads to decoherence. In quantum information processing with solid-state qubits, decoherence significantly limits the performances of such devices. Therefore, it is necessary to fully understand the mechanisms that lead to decoherence. In this review, we discuss how decoherence affects two of the most successful realizations of solid-state qubits, namely, spin qubits and superconducting qubits. In the former, the qubit is encoded in the spin 1/2 of the electron, and it is implemented by confining the electron spin in a semiconductor quantum dot. Superconducting devices show quantum behaviour at low temperatures, and the qubit is encoded in the two lowest energy levels of a superconducting circuit. The electron spin in a quantum dot has two main decoherence channels, a (Markovian) phonon-assisted relaxation channel, due to the presence of a spin–orbit interaction, and a (non-Markovian) spin bath constituted by the spins of the nuclei in the quantum dot that interact with the electron spin via the hyperfine interaction. In a superconducting qubit, decoherence takes place as a result of fluctuations in the control parameters, such as bias currents, applied flux and bias voltages, and via losses in the dissipative circuit elements.  相似文献   

12.
We investigate theoretically and experimentally how quantum state-detection efficiency is improved by the use of quantum information processing (QIP). Experimentally, we encode the state of one 9Be(+) ion qubit with one additional ancilla qubit. By measuring both qubits, we reduce the state-detection error in the presence of noise. The deviation from the theoretically allowed reduction is due to infidelities of the QIP operations. Applying this general scheme to more ancilla qubits suggests that error in the individual qubit measurements need not be a limit to scalable quantum computation.  相似文献   

13.
In recent years, there have been significant progress toward building a practical quantum computer, demonstrating key ingredients such as single-qubit gates and a two-qubit entangling gate. Among various physical platforms for a potential quantum computing processor, a trapped-ion system has been one of the most promising platforms due to long coherence times, high-fidelity quantum gates, and qubit connectivity. However, scaling up the number of qubits for a practical quantum computing faces a core challenge in operating high-fidelity quantum gates under influence from neighboring qubits. In particular, for the trapped-ion system, unwanted quantum crosstalk between qubits and ions’ quantum motional states hinder performing high-fidelity entanglement as the number of ions increases. In this review, we introduce a trapped-ion system and explain how to perform single-qubit gates and a two-qubit entanglement. Moreover, we mainly address theoretical and experimental approaches to achieve high-fidelity and scalable entanglement toward a trapped-ion based quantum computer.  相似文献   

14.
We propose a scheme to manipulate a topological spin qubit which is realized with cold atoms in a one-dimensional optical lattice. In particular, by introducing a quantum opto-electro-mechanical interface, we are able to first transfer a superconducting qubit state to an atomic qubit state and then to store it into the topological spin qubit. In this way, an efficient topological quantum memory could be constructed for the superconducting qubit. Therefore, we can consolidate the advantages of both the noise resistance of the topological qubits and the scalability of the superconducting qubits in this hybrid architecture.  相似文献   

15.
We report observations of entanglement of two remote atomic qubits, achieved by generating an entangled state of an atomic qubit and a single photon at site , transmitting the photon to site in an adjacent laboratory through an optical fiber, and converting the photon into an atomic qubit. Entanglement of the two remote atomic qubits is inferred by performing, locally, quantum state transfer of each of the atomic qubits onto a photonic qubit and subsequent measurement of polarization correlations in violation of the Bell inequality [EQUATION: SEE TEXT]. We experimentally determine [EQUATION: SEE TEXT]. Entanglement of two remote atomic qubits, each qubit consisting of two independent spin wave excitations, and reversible, coherent transfer of entanglement between matter and light represent important advances in quantum information science.  相似文献   

16.
Jianfei Chen 《中国物理 B》2022,31(8):88501-088501
The recent experimental observation of topological magnon insulator states in a superconducting circuit chain marks a breakthrough for topological physics with qubits, in which a dimerized qubit chain has been realized. Here, we extend such a dimer lattice to superlattice with arbitrary number of qubits in each unit cell in superconducting circuits, which exhibits rich topological properties. Specifically, by considering a quadrimeric superlattice, we show that the topological invariant (winding number) can be effectively characterized by the dynamics of the single-excitation quantum state through time-dependent quantities. Moreover, we explore the appearance and detection of the topological protected edge states in such a multiband qubit system. Finally, we also demonstrate the stable Bloch-like-oscillation of multiple interface states induced by the interference of them. Our proposal can be readily realized in experiment and may pave the way towards the investigation of topological quantum phases and topologically protected quantum information processing.  相似文献   

17.
We propose a new method to transform a pixel image to the corresponding quantum-pixel using a qubit per pixel to represent each pixels classical weight in a quantum image matrix weight.All qubits are linear superposition,changing the coefficients level by level to the entire longitude of the gray scale with respect to the base states of the qubit.Classically,these states are just bytes represented in a binary matrix,having code combinations of 1 or 0 at all pixel locations.This method introduces a qubit-pixel image representation of images captured by classical optoelectronic methods.  相似文献   

18.
We experimentally demonstrate multiple rounds of heat-bath algorithmic cooling in a 3 qubit solid-state nuclear magnetic resonance quantum information processor. By pumping entropy into a heat bath, we are able to surpass the closed system limit of the Shannon bound and purify a single qubit to 1.69 times the heat-bath polarization. The algorithm combines both high fidelity coherent control and a deliberate interaction with the environment. Given this level of quantum control in systems with larger reset polarizations, nearly pure qubits should be achievable.  相似文献   

19.
赵虎  李铁夫  刘建设  陈炜 《物理学报》2012,61(15):154214-154214
超导量子计算是目前被认为最有希望实现量子计算机的方案之一. 超导量子比特是超导量子计算的核心部件. 如何尽可能的增加超导量子比特的退相干时间, 大规模的集成超导量子比特已成为超导量子计算研究的主要方向. 超导量子比特作为宏观的人工原子, 有许多量子光学现象都能够在其中观测到. 利用超导量子比特实现电磁感应透明为研究超导量子比特的退相干机理提供了新手段, 为研究非线性光学、光存储、光的超慢速传输等量子光学效应开辟了新思路. 本文介绍了电磁感应透明的理论基础, 总结了目前针对超导量子比特的电磁感应透明研究进展, 对比了一般气体原子与超导量子比特的电磁感应透明区别, 并对超导量子比特实现电磁感应透明的潜在应用进行了总结和展望.  相似文献   

20.
We propose a new method to transform a pixel image to the corresponding quantum-pixel using a qubit per pixel to represent each pixels classical weight in a quantum image matrix weight. All qubits are linear superposition, changing the coefficients level by level to the entire longitude of the gray scale with respect to the base states of the qubit. Classically, these states are just bytes represented in a binary matrix, having code combinations of 1 or 0 at all pixel locations. This method introduces a qubit-pixel image representation of images captured by classical optoelectronic methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号