首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Simultaneous masking of a 20-ms, 1-kHz signal was investigated using 50-ms gated and continuous sinusoidal maskers with frequencies below, at, and above 1 kHz. Gated maskers can produce considerably (5-20 dB) more masking than continuous maskers, and this difference does not appear to result from the spread of energy produced by gating either the masker or the signal. For masker frequencies below the signal frequency, this difference in masking is primarily due to the detection of the cubic difference tone in the continuous condition. For masker frequencies at and above the signal frequency, the difference appears to be an important property of masking. Implications of this frequency-dependent effect for measures of frequency selectivity are discussed.  相似文献   

2.
The effects of forward and backward noise fringes on binaural signal detectability were investigated. Masked thresholds for a 12-ms, 250-Hz, sinusoidal signal masked by Gaussian noise, centered at 250 Hz, with bandwidths from 3 to 201 Hz, were obtained in N(0)S(0) and N(0)S(π) configurations. The signal was (a) temporally centered in a 12-ms noise burst (no fringe), (b) presented at the start of a 600-ms noise burst (backward fringe), or (c) temporally centered in a 600-ms noise burst (forward-plus-backward fringe). For noise bandwidths between 3 and 75 Hz, detection in N(0)S(0) improved with the addition of a backward fringe, improving further with an additional forward fringe; there was little improvement in N(0)S(π). The binaural masking-level difference (BMLD) increased from 0 to 8 dB with a forward-plus-backward fringe as noise bandwidths increased to 100 Hz, increasing slightly to 10 dB at 201 Hz. This two-stage increase was less pronounced with a backward fringe. With no fringe, the BMLD was about 10-14 dB at all bandwidths. Performance appears to result from the interaction of across-time and across-frequency listening strategies and the possible effects of gain reduction and suppression, which combine in complex ways. Current binaural models are, as yet, unable to account fully for these effects.  相似文献   

3.
Overshoot was measured in both ears of four subjects with normal hearing and in five subjects with permanent, sensorineural hearing loss (two with a unilateral loss). The masker was a 400-ms broadband noise presented at a spectrum level of 20, 30, or 40 dB SPL. The signal was a 10-ms sinusoid presented 1 or 195 ms after the onset of the masker. Signal frequency was 1.0 or 4.0 kHz, which placed the signal in a region of normal (1.0 kHz) or impaired (4.0 kHz) absolute sensitivity for the impaired ears. For the normal-hearing subjects, the effects of signal frequency and masker level were similar to those published previously. In particular, overshoot was larger at 4.0 than at 1.0 kHz, and overshoot at 4.0 kHz tended to decrease with increasing masker level. At 4.0 kHz, overshoot values were significantly larger in the normal ears: Maximum values ranged from about 7-26 dB in the normal ears, but were always less than 5 dB in the impaired ears. The smaller overshoot values resulted from the fact that thresholds in the short-delay condition were considerably better in the hearing-impaired subjects than in the normal-hearing subjects. At 1.0 kHz, overshoot values for the two groups of subjects more or less overlapped. The results suggest that permanent, sensorineural hearing loss disrupts the mechanisms responsible for a large overshoot effect.  相似文献   

4.
The threshold for a signal masked by a narrow band of noise centered at the signal frequency (the on-frequency band) may be reduced by adding to the masker a second band of noise (the flanking band) whose envelope is correlated with that of the first band, an effect called comodulation masking release (CMR). This paper examines CMR as a function of masker bandwidth and time delay between the envelopes of the on-frequency and flanking bands. The 1.0-kHz sinusoidal signal had a duration of 400 ms. The on-frequency band was presented alone (reference condition) or with the flanking band. The flanking-band envelope was either correlated or uncorrelated with that of the on-frequency band. Flanking-band center frequencies ranged from 0.25-2.0 kHz. The flanking band was presented either in the same ear as the on-frequency band (monaural condition) or in the opposite ear (dichotic condition). The noise bands had bandwidths of 6.25, 25, or 100 Hz. In the correlated conditions, the flanking-band envelope was delayed with respect to that of the on-frequency band by 0, 5, 10, or 20 ms. For the 100-Hz bandwidth, CMRs were small (typically less than 1 dB) in both monaural and dichotic conditions at all delay times. For the 25-Hz bandwidth, CMRs were about 3.5 dB for the 0-ms delay, and decreased to about 1.5 dB for the 20-ms delay. For the 6.25-Hz bandwidth, CMRs averaged about 5 dB and were almost independent of delay time. The results suggest that the absolute delay time is not the critical variable determining CMR. The magnitude of CMR appears to depend on the correlation between the envelopes of the on-frequency and flanking bands. However, the results do not support a model of CMR that assumes that signal threshold corresponds to a constant change in across-band envelope correlation when the correlation is transformed to Fisher's z.  相似文献   

5.
Additivity of simultaneous masking   总被引:1,自引:0,他引:1  
Simultaneous masking functions (signal level at threshold versus masker level) were obtained for equally intense maskers presented individually and in pairs. The signal was a 2.0-kHz sinusoid. The pairs of maskers were (1) two sinusoids with frequencies 1.9 and 2.1 kHz, (2) two narrow bands of noise (50 Hz wide) centered at 1.9 and 2.1 kHz, (3) two narrow bands of noise (50 Hz wide) centered at 1.8 and 1.9 kHz, and (4) the 1.9-kHz sinusoid combined with the narrow band of noise centered at 2.1 kHz. The pairs of maskers produced anywhere from 10 to 17 dB of masking beyond that predicted from the simple sum of the masking produced by the individual maskers. The amount of this "additional masking" was independent of masker level. Adding a continuous low level background noise reduced the amount of additional masking only slightly (approximately 5 dB). The data are consistent with a model in which the effects of the maskers are summed after undergoing independent compressive transformations.  相似文献   

6.
A variable-duration notched-noise experiment was conducted in a noise context. Broadband noise preceded and followed a tone and notched noise of similar duration. Thresholds were measured at four durations (10, 30, 100, and 300 ms), two center frequencies (0.6, 2.0 kHz), and five relative notch widths (0.0, 0.1, 0.2, 0.4, 0.8). At 0.6 kHz, 10-ms thresholds decrease 6 dB across notch widths, while 300-ms thresholds decrease over 35 dB. These trends are similar but less pronounced at 2 kHz. In a second experiment, the short-duration notched noise was replaced with a flat noise which provided an equivalent amount of simultaneous masking and thresholds dropped by as much as 20 dB. A simple combination of simultaneous and nonsimultaneous masking is unable to predict these results. Instead, it appears that the elevated thresholds at short durations are dependent on the spectral shape of the simultaneous masker.  相似文献   

7.
These experiments investigated whether perceptual cueing plays a role in the "unmasking" effects which have been observed in forward masking for narrow-band noise maskers and brief signals. The forward masking produced by a 100-Hz-wide noise masker at a level of 60 dB SPL was measured for a 1-kHz sinusoidal signal with a raised-cosine envelope and a duration of 10 ms at the 6-dB-down points, both for the masker alone, and with various components added to the masker (and gated synchronously with the masker). Unmasking was found to occur even for components which were extremely unlikely to produce a significant suppression of the masker: these included a 75-dB SPL 4-kHz sinusoid, a 50-dB SPL 1.4-kHz sinusoid, a noise low-pass filtered at 4 kHz with a spectrum level of 0 dB, and a noise low-pass filtered at 4 kHz with a spectrum level of 20 dB presented in the opposite ear to the masker-plus-signal. It is concluded that perceptual cueing can play a significant role in producing unmasking for brief signals following narrow-band noise maskers, and that it is unwise to interpret the unmasking solely in terms of suppression.  相似文献   

8.
The shape of the auditory filter was estimated at three center frequencies, 0.5, 1.0, and 2.0 kHz, for five subjects with unilateral cochlear impairments. Additional measurements were made at 1.0 kHz using one subject with a unilateral impairment and six subjects with bilateral impairments. Subjects were chosen who had thresholds in the impaired ears which were relatively flat as a function of frequency and ranged from 15 to 70 dB HL. The filter shapes were estimated by measuring thresholds for sinusoidal signals (frequency f) in the presence of two bands of noise, 0.4 f wide, one above and one below f. The spectrum level of the noise was 50 dB (re: 20 mu Pa) and the noise bands were placed both symmetrically and asymmetrically about the signal frequency. The deviation of the nearer edge of each noise band from f varied from 0.0 to 0.8 f. For the normal ears, the filters were markedly asymmetric for center frequencies of 1.0 and 2.0 kHz, the high-frequency branch being steeper. At 0.5 kHz, the filters were more symmetric. For the impaired ears, the filter shapes varied considerably from one subject to another. For most subjects, the lower branch of the filter was much less steep than normal. The upper branch was often less steep than normal, but a few subjects showed a near normal upper branch. For the subjects with unilateral impairments, the equivalent rectangular bandwidth of the filter was always greater for the impaired ear than for the normal ear at each center frequency. For three subjects at 0.5 kHz and one subject at 1.0 kHz, the filter had too little selectivity for its shape to be determined.  相似文献   

9.
The forward-masked threshold for a 10-ms, 1-kHz sinusoidal signal was measured as a function of the level of a narrow-band (60-Hz wide) noise masker at five masker frequencies (0.6, 0.8, 1.0, 1.15, and 1.25 kHz) using both a fixed-masker procedure (determine the threshold level of the signal for a fixed level of the masker) and the converse procedure (determine the masker level necessary to just mask a given signal). A common growth-of-masking function describes the results of both procedures for a given masker frequency; i.e., an identical masker and signal lead to identical performance regardless of which is the dependent variable. The growth-of-masking functions for different masker frequencies show varying degrees of nonlinearity. The nonlinearity of the growth-of-masking functions underlies the discrepancies which arise between masking-pattern and tuning-curve data. These discrepancies do not arise because performance somehow depends upon whether the masker or signal is the dependent variable.  相似文献   

10.
The overshoot effect can be reduced by temporary hearing loss induced by aspirin or exposure to intense sound. The present study simulated a hearing loss at 4.0 kHz via pure-tone forward masking and examined the effect of the simulation on threshold for a 10-ms, 4.0-kHz signal presented 1 ms after the onset of a 400-ms, broadband noise masker whose spectrum level was 20 dB SPL. Masker frequency was 3.6, 4.0, or 4.2 kHz, and masker level was 80 dB SPL. Subject-dependent delays were determined such that 10 or 20 dB of masking at 4.0 kHz was produced. In general, the pure-tone forward masker did not reduce the simultaneous-masked threshold, suggesting that elevating threshold with a pure-tone forward masker does not sufficiently simulate the effect of a temporary hearing loss on overshoot.  相似文献   

11.
Canahl [J. Acoust. Soc. Am. 50, 471-474 (1971)] measured thresholds for a 1.0-kHz sinusoid masked either by two or by four surrounding tones. He reported four-tone masked thresholds that exceeded, by 5-7.5 dB, the energy sum of the masking produced by the individual tone pairs. The present paper reports on a series of experiments investigating the effects of several factors on this 5-7.5 dB "excess" masking. In each experiment, thresholds for a 1.0-kHz 250-ms sinusoid were measured as a function of the overall level of two or four equal amplitude sinusoids with frequencies arithmetically centered around 1.0 kHz. For conditions similar to those of the Canahl experiment, 5-6 dB of excess masking was obtained independent of the level of the masking tones. Randomly varying overall level across presentations had no effect on the excess masking. The excess masking was reduced or eliminated when the masking tones were generated using an amplitude modulation technique, when they were gated on and off with the signal, or when their waveshapes were fixed across trials. Canahl's result may reflect listeners' ability to detect the signal as a change in the waveshape of the multitone masker.  相似文献   

12.
Auditory filter bandwidths were measured using nonsimultaneous masking, as a function of signal level between 10 and 35 dB SL for signal frequencies of 1, 2, 4, and 6 kHz. The brief sinusoidal signal was presented in a temporal gap within a spectrally notched noise. Two groups of normal-hearing subjects were tested, one using a fixed masker level and adaptively varying signal level, the other using a fixed signal level and adaptively varying masker level. In both cases, auditory filters were derived by assuming a constant filter shape for a given signal level. The filter parameters derived from the two paradigms were not significantly different. At 1 kHz, the equivalent rectangular bandwidth (ERB) decreased as the signal level increased from 10 to 20 dB SL, after which it remained roughly constant. In contrast, at 6 kHz, the ERB increased consistently with signal levels from 10 to 35 dB SL. The results at 2 and 4 kHz were intermediate, showing no consistent change in ERB with signal level. Overall, the results suggest changes in the level dependence of the auditory filters at frequencies above 1 kHz that are not currently incorporated in models of human auditory filter tuning.  相似文献   

13.
The effective internal level of a 1-kHz tone at 50 dB SPL was estimated by measuring the forward masking produced on a 10-ms signal tone of the same frequency. Noise containing a spectral notch was then added to the masker tone, and its influence on the effective level of the tone was measured with a variety of noise levels, notch widths, and notch shapes. In experiment 1, the masker tone was centered in the spectral notch, itself centered in a 2-kHz band of noise. As the spectrum level in the noise passbands increased from 6 dB/Hz to 36 dB/Hz, signal threshold decreased, indicating a decrease in masking by the masker tone. This "unmasking" effect of the noise was attributed to suppression of the masker tone by the components in the noise. Unmasking was greatest with the narrowest spectral notch (250 Hz), and decreased to zero as the notch widened to 1500 Hz. Compared to its level when presented alone, the effective internal level of the masker tone could be reduced by up to 30 dB (250-Hz notch, 36 dB/Hz). The relative suppressive strength of individual noise components was estimated in experiment 2, in which the 1-kHz masker tone was located at one edge of a spectral notch, rather than in the center. Noise spectrum level was fixed at 16 dB/Hz. As notch width decreased to zero, on either the high-frequency or low-frequency side of the masker tone, its effective internal level was again reduced by approximately 30 dB. In a tentative analysis, the first derivative of the smoothed threshold function was taken, to provide an estimate of the relative contributions to suppression at 1 kHz of noise components between 250 and 1740 Hz.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The present study was designed to assess the effects of age on the time course of backward masking. In experiment 1, thresholds for detecting a 10-ms, 500-Hz sinusoidal signal were measured as a function of the temporal separation between the signal and a 50-ms broadband masker. Subjects were younger (18-24) and older (over age 65) adults with normal hearing (thresholds less than 20 dB HL) for frequencies of 4 kHz and below. Younger subjects exhibited less overall masking and steeper recovery functions than did the older adults. Masked thresholds for younger participants approached unmasked thresholds for signal-masker delays greater than 6-8 ms. In contrast, older adults exhibited significant masking even at the longest delay tested (20 ms). In experiment 2, signal duration was decreased to 5 ms for a separate group of younger adults. Although overall thresholds were elevated for the shorter signal duration, the slope of the backward masking recovery function was not different from that observed for younger adults in experiment 1. The results suggest that age, independent of hearing loss, affects the temporal course of backward masking.  相似文献   

15.
This study examined the time course of cochlear suppression using a tone-burst suppressor to measure decrement of distortion-product otoacoustic emissions (DPOAEs). Seven normal-hearing subjects with ages ranging from 19 to 28 yr participated in the study. Each subject had audiometric thresholds ≤ 15 dB HL [re ANSI (2004) Specifications for Audiometers] for standard octave and inter-octave frequencies from 0.25 to 8 kHz. DPOAEs were elicited by primary tones with f(2)?= 4.0 kHz and f(1)?= 3.333 kHz (f(2)/f(1)?= 1.2). For the f(2), L(2) combination, suppression was measured for three suppressor frequencies: One suppressor below f(2) (3.834 kHz) and two above f(2) (4.166 and 4.282 kHz) at three levels (55, 60, and 65 dB SPL). DPOAE decrement as a function of L(3) for the tone-burst suppressor was similar to decrements obtained with longer duration suppressors. Onset- and setoff- latencies were ≤ 4 ms, in agreement with previous physiological findings in auditory-nerve fiber studies that suggest suppression results from a nearly instantaneous compression of the waveform. Persistence of suppression was absent for the below-frequency suppressor (f(3)?= 3.834 kHz) and was ≤ 3 ms for the two above-frequency suppressors (f(3)?= 4.166 and 4.282 kHz).  相似文献   

16.
This study examines how simultaneous masking of a tone by bandlimited noise may be affected by nonlinear interactions among spectral components of the noise. Simultaneous masking patterns (signal threshold versus signal frequency) were obtained with three types of maskers: (A) a narrow-band noise, 50 Hz wide with variable center frequency fv, (B) pairs of narrow-band noises, each band 50 Hz wide with center frequencies fl and fu, and (C) wide-band noise formed by filling the spectral gap between the two bands of (B). The variable frequency fv was set to 1.0, 1.1, 1.2, and 1.3 kHz: fl was fixed at 1.0 kHz, and fu had values of 1.1, 1.2, and 1.3 kHz. In most conditions, the two-band maskers and the wideband maskers produced more masking than would be predicted from the masking produced by the single narrow-band maskers. For certain signal frequencies below the maskers, adding noise to fill the spectral gap of the two-band masker actually resulted in a 3- to 15-dB release from masking. These results reveal factors that may operate to confound modern measures of frequency selectivity.  相似文献   

17.
This experiment assessed the benefits of suppression and the impact of reduced or absent suppression on speech recognition in noise. Psychophysical suppression was measured in forward masking using tonal maskers and suppressors and band limited noise maskers and suppressors. Subjects were 10 younger and 10 older adults with normal hearing, and 10 older adults with cochlear hearing loss. For younger subjects with normal hearing, suppression measured with noise maskers increased with masker level and was larger at 2.0 kHz than at 0.8 kHz. Less suppression was observed for older than younger subjects with normal hearing. There was little evidence of suppression for older subjects with cochlear hearing loss. Suppression measured with noise maskers and suppressors was larger in magnitude and more prevalent than suppression measured with tonal maskers and suppressors. The benefit of suppression to speech recognition in noise was assessed by obtaining scores for filtered consonant-vowel syllables as a function of the bandwidth of a forward masker. Speech-recognition scores in forward maskers should be higher than those in simultaneous maskers given that forward maskers are less effective than simultaneous maskers. If suppression also mitigated the effects of the forward masker and resulted in an improved signal-to-noise ratio, scores should decrease less in forward masking as forward-masker bandwidth increased, and differences between scores in forward and simultaneous maskers should increase, as was observed for younger subjects with normal hearing. Less or no benefit of suppression to speech recognition in noise was observed for older subjects with normal hearing or hearing loss. In general, as suppression measured with tonal signals increased, the combined benefit of forward masking and suppression to speech recognition in noise also increased.  相似文献   

18.
The purpose of this report is to present new data that provide a novel perspective on temporal masking, different from that found in the classical auditory literature on this topic. Specifically, measurement conditions are presented that minimize rather than maximize temporal spread of masking for a gated (200-ms) narrow-band (405-Hz-wide) noise masker logarithmically centered at 2500 Hz. Masked detection thresholds were measured for brief sinusoids in a two-interval, forced-choice (21FC) task. Detection was measured at each of 43 temporal positions within the signal observation interval for the sinusoidal signal presented either preceding, during, or following the gating of the masker, which was centered temporally within each 500-ms observation interval. Results are presented for three listeners; first, for detection of a 1900-Hz signal across a range of masker component levels (0-70 dB SPL) and, second, for masked detection as a function of signal frequency (fs = 500-5000 Hz) for a fixed masker component level (40 dB SPL). For signals presented off-frequency from the masker, and at low-to-moderate masker levels, the resulting temporal masking functions are characterized by sharp temporal edges. The sharpness of the edges is accentuated by complex patterns of temporal overshoot and undershoot, corresponding with diminished and enhanced detection, respectively, at both masker onset and offset. This information about the onset and offset timing of the gated masker is faithfully represented in the temporal masking functions over the full decade range of signal frequencies (except for fs=2500 Hz presented at the center frequency of the masker). The precise representation of the timing information is remarkable considering that the temporal envelope characteristics of the gated masker are evident in the remote masking response at least two octaves below the frequencies of the masker at a cochlear place where little or no masker activity would be expected. This general enhancement of the temporal edges of the masking response is reminiscent of spectral edge enhancement by lateral suppression/inhibition.  相似文献   

19.
Thresholds for 10-ms sinusoids simultaneously masked by bursts of bandpass noise centered on the signal frequency were measured for a wide range of signal frequencies and noise levels. Thresholds were defined as the signal power relative to the masker power at the output of an auditory filter centered on the signal frequency. It was found that the presentation of a continuous random noise, with a spectral notch centered on the signal frequency, produced a reduction in signal thresholds of up to 11 dB. A notched noise spectrum level of 0-5 dB above that of the masker proved most effective in producing a masking release, as measured by a reduction in masked threshold. A release from masking of up to 7 dB could be obtained with a continuous bandpass noise. The most effective spectrum level of this noise was 5 dB below that of the masker. The effect of the continuous notched noise was to reduce signal-to-masker ratios at threshold to about 0 dB, regardless of the threshold in the absence of continuous noise. Thus the greatest release from masking occurred when "unreleased" thresholds were highest. The release from masking is almost complete within 320 ms of notched noise onset, and persists for about 160 ms after notched noise offset, regardless of notched noise level. The phenomenon is similar in many ways to the "overshoot" effect reported by Zwicker [J. Acoust. Soc. Am. 37, 653-663 (1965)]. It is argued that both effects can be largely attributed to peripheral short-term adaptation, a mechanism which is also believed to be involved in forward masking.  相似文献   

20.
Thresholds were compared for the detection of 20-ms sinusoidal signals presented with either continuous or gated sinusoidal pedestals of the same frequency (500 or 6500 Hz). Pedestal levels ranged from 35-80 dB SPL. For 500-Hz signals, thresholds were lower in the continuous-pedestal condition than in the gated-pedestal condition, for all pedestal levels above 35 dB SPL. When the pedestal level was 35 dB, thresholds were higher in the continuous-pedestal condition than in the gated-pedestal condition. This was also true at all pedestal levels when bandstop noise centered around the pedestal frequency was added to the pedestal. For 6500-Hz signals, a deterioration in performance at intermediate levels, similar to that reported by Carlyon and Moore [J. Acoust. Soc. Am. 76, 1369-1376 (1984)], was found in the gated-pedestal condition. No such deterioration occurred in the continuous-pedestal condition. However, masking signal onsets and offsets by bursts of bandpass noise produced a midlevel deterioration in the continuous-pedestal condition. This was true when bandstop noise was absent, and when it was gated on and off in each observation interval. When continuous bandstop noise was present, no midlevel deterioration was observed, even when onsets and offsets were masked. The results suggest that in the continuous-pedestal condition subjects may normally maintain performance across level at 6500 Hz by attending to a transient response to signal onsets. Presenting bursts of bandpass noise disrupts the detection of such a response. The absence of a midlevel deterioration when continuous bandstop noise was present may be related to the adaptation to the sinusoidal pedestal that was caused by the bandstop noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号