首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
纳米多级孔分子筛:简短的综述   总被引:1,自引:0,他引:1  
分子筛是一种三维微孔结构的硅铝酸盐晶体,具有灵活多变的骨架和组成、较高的物理和水热稳定性、无毒、高比表面积、离子可交换性以及很低的成本等特点,因而在油品精制、石油化学、农业、水和污水处理等众多领域中用作离子交换剂、催化剂和吸附剂。尽管分子筛的应用是基于其本身的微孔结构,但微孔也导致体积较大的反应物和产物分子的传质阻力高。通过制备纳米尺度和多级孔结构的分子筛等多种手段可克服常规分子筛所具有的传质限制。人们已经开发了多种方法制备了新型的分子筛材料,并考察了它们在各种催化反应和吸附反应中的性能。在反应体系中采用这种多级孔的纳米分子筛,有可能提高催化剂的使用寿命和催化性能,抑制积碳和失活。本综述概述了多级孔分子筛和纳米分子筛的高性能及其合成方法的最新进展,讨论了每个合成方法的优缺点,简述了纳米分子筛和二级孔结构分子筛的催化应用,并与常规分子筛进行了比较。  相似文献   

2.
Zeolites are crystalline microporous materials with application in diverse fields, especially in catalysis. The ability to prepare zeolites with targeted physicochemical properties for a specific catalytic application is a matter of great interest, because it allows the efficiency of the entire chemical process to be increased (higher product yields, lower undesired by‐products, less energy consumption, and cost savings, etc). Nevertheless, directing the zeolite crystallization towards the material with the desired framework topology, crystal size, or chemical composition is not an easy task, since several variables influence the nucleation and crystallization processes. The combination of accumulated knowledge, rationalization, and innovation has allowed the synthesis of unique zeolitic structures in the last few years. This is especially true in terms of the design of organic and inorganic structure‐directing agents (SDAs). In this Minireview we will present the rationale we have followed in our studies to synthesize new zeolite structures, while putting this in perspective with the advances made by other researchers of the zeolite community.  相似文献   

3.
功能无机晶体材料的定向设计与合成是化学及材料科学领域中一项重要的前沿课题。本文介绍了近十几年来我们在多孔晶体材料,主要包括分子筛和金属有机骨架晶体材料的分子工程学研究方面所取得的一些进展。其中包括提出了定向设计具有特殊孔道结构和特殊计量比分子筛多孔骨架结构的计算机方法;在国际上率先建立了分子筛多孔晶体材料合成与结构数据...  相似文献   

4.
The crystallization chemistry of silica‐based zeolites in ionic liquids remains highly puzzling and interesting in the field of zeolite science. Herein, we report the successful ionothermal synthesis of germanosilicate zeolites. The ionothermal templating effect with respect to the structure, alkalinity and concentration of organic additives was comparatively studied. The results showed that a small amount of organic base could effectively aid the dissolution of silica source and facilitate the crystallization of germanosilicate zeolites with ionic liquid as template. Remarkably, STW and IRR structures constructed with double‐four‐ring (D4R) structure‐building units were ionothermally prepared using 1‐ethyl/butyl‐3‐methyl imidazolium and 1‐benzyl‐3‐methyl imidazolium ionic liquids as template, respectively. Ionothermal synthesis tailored with organic base showed suitable chemistry for the formation of germanium‐containing siliceous D4R units. This finding will be helpful for the rational exploration of novel extra‐large‐pore zeolitic structures.  相似文献   

5.
Porous crystalline materials such as zeolites, metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) have attracted great interest due to their well-defined pore structures in molecular dimensions. Knowing the atomic structures of porous materials is crucial for understanding their properties and exploring their applications. Many porous materials are synthesized as polycrystalline powders, which are too small for structure determination by X-ray diffraction. Three-dimensional electron diffraction (3DED) has been developed for studying such materials. In this Minireview, we summarize the recent developments of 3DED methods and demonstrate how 3DED revolutionized structural analysis of zeolites, MOFs, and COFs. Zeolites and MOFs whose structures remained unknown for decades could be solved. New approaches for design and targeted synthesis of novel zeolites could be developed. Moreover, we discuss the advances of structural analysis by 3DED in revealing the unique structural features and properties, such as heteroatom distributions, mixed-metal frameworks, structural flexibility, guest–host interactions, and structure transformation.

Three-dimensional electron diffraction is a powerful tool for accurate structure determination of zeolite, MOF, and COF crystals that are too small for X-ray diffraction. By revealing the structural details, the properties of the materials can be understood, and new materials and applications can be designed.  相似文献   

6.
材料基因工程是近年来材料领域兴起的前沿技术, 其基本理念是融合材料高通量计算、 高通量实验和数据技术加速新材料的设计和研发. 分子筛作为一种重要的化工材料, 因其良好的热稳定性、 较高的比表面积、 独特的孔道结构及可调变的元素组成和酸性, 在气体吸附、 分离、 异相催化和离子交换等工业领域应用广泛. 近年来, 融合高通量计算、 高通量实验和数据库技术的材料基因工程技术正逐步应用于分子筛研发等领域: 高通量计算能够从理论上预测并筛选出具有优异性能的分子筛合成目标、 高通量实验显著提升了分子筛材料合成与表征的效率、 数据库技术则为未来挖掘分子筛材料的合成规律与构效关系奠定了数据基础. 本文主要从这3个方面阐述材料基因工程技术在分子筛材料研发领域的应用及进展, 总结以功能为导向、 定向设计和构筑分子筛材料所面临的机遇与挑战, 并对材料基因工程技术在分子筛领域的前景进行了展望.  相似文献   

7.
Preparation and characterization of well-organized zeolitic nanocrystal aggregates with an interconnected hierarchically micro-meso-macro porous system are described. Amorphous nanoparticles in bimodal aluminosilicates were directly transformed into highly crystalline nanosized zeolites, as well as acting as scaffold template. All pores on three length scales incorporated in one solid body are interconnected with each other. These zeolitic nanocrystal aggregates with hierarchically micro-meso-macroporous structure were thoroughly characterized. TEM images and (29)Si NMR spectra showed that the amorphous phase of the initial material had been completely replaced by nanocrystals to give a micro-meso-macroporous crystalline zeolitic structure. Catalytic testing demonstrated their superiority due to the highly active sites and the presence of interconnected micro-meso-macroporosity in the cracking of bulky 1,3,5-triisopropylbenzene (TIPB) compared to traditional zeolite catalysts. This synthesis strategy was extended to prepare various zeolitic nanocrystal aggregates (ZSM-5, Beta, TS-1, etc.) with well-organized hierarchical micro-meso-macroporous structures.  相似文献   

8.
Unit-cell-thin zeolitic nanosheets have emerged as fascinating materials for catalysis and separation. The controllability of nanosheet stacking is extremely challenging in the chemistry of two-dimensional zeolitic materials. To date, the organization of zeolitic nanosheets in hydrothermal synthesis has been limited by the lack of tunable control over the guest–host interactions between organic structure-directing agents (OSDAs) and zeolitic nanosheets. A direct synthetic methodology is reported that enables systematic manipulation of the aluminosilicate MWW-type nanosheet stacking. Variable control of guest–host interactions is rationally achieved by synergistically altering the charge density of OSDAs and synthetic silica-to-alumina composition. These finely controlled interactions allow successful preparation of a series of three-dimensional (3D) zeolites, with MWW-layer stacking in wide ranges from variably disorder to fully ordered, leading to tunable catalytic activity in the cracking reaction. These results highlight unprecedented opportunities to modulate zeolitic nanosheets arrangement in 3D zeolites whose structure can be tailored for catalysis and separation.  相似文献   

9.
Metal encapsulation in zeolitic materials through one-pot hydrothermal synthesis (HTS) is an attractive technique to prepare zeolites with a high metal dispersion. Due to its simplicity and the excellent catalytic performance observed for several catalytic systems, this method has gained a great deal of attention over the last few years. While most studies apply synthetic methods involving different organic ligands to stabilize the metal under synthesis conditions, here we report the use of metallosiloxanes as an alternative metal precursor. Metallosiloxanes can be synthesized from simple and cost-affordable chemicals and, when used in combination with zeolite building blocks under standard synthesis conditions, lead to quantitative metal loading and high dispersion. Thanks to the structural analogy of siloxane with TEOS, the synthesis gel stabilizes by forming siloxane bridges that prevent metal precipitation and clustering. When focusing on Fe-encapsulation, we demonstrate that Fe-MFI zeolites obtained by this method exhibit high catalytic activity in the NH3-mediated selective catalytic reduction (SCR) of NOx along with a good H2O/SO2 tolerance. This synthetic approach opens a new synthetic route for the encapsulation of transition metals within zeolite structures.  相似文献   

10.
Isomorphous and non‐isomorphous substitutions of transition metal and IIIA elements for framework atoms of molecular sieves are very interesting in order to modify their acidic and redox catalytic properties. In this paper, we review the interaction between metal cations other than Al+3 with zeolitic frameworks in Ti, Co, V and Ga‐containing silicate and aluminophosphate zeolites detected by spectroscopic investigations. During synthesis and redox treatments, solvent, oxidant and surface silanol groups sometimes were found to attach to the framework metal ion sites, perhaps involved in the variation from tetrahedral to non‐tetrahedral coordinations.  相似文献   

11.
Given their great potential as new industrial catalysts and adsorbents, the search for new zeolite structures is of major importance in nanoporous materials chemistry. However, although innumerable theoretical frameworks have been proposed, none of them have been synthesized by a priori design yet. We generated a library of diazolium‐based cations inspired from the organic structure‐directing agents (OSDAs) recently reported to give two structurally related zeolites (PST‐21 and PST‐22) under highly concentrated, excess‐fluoride conditions and compared the stabilization energies of each OSDA cation in ten pre‐established hypothetical structures. A combination of the ability of the OSDA selected in this way with the excess‐fluoride approach has allowed us to crystallize PST‐30, the targeted aluminosilicate zeolite structure. We anticipate that our approach, which aims to rationally couple computational predictions of OSDAs with an experimental setup, will advance further development in the synthesis of zeolites with desired properties.  相似文献   

12.
沸石吸附储氢研究进展   总被引:1,自引:0,他引:1  
杜晓明  李静  吴尔冬 《化学进展》2010,22(1):248-254
沸石类微孔材料作为储氢介质的研究已成为近年来储氢领域中备受关注的热点问题,但对于其储氢机理、储氢容量及其影响因素的文献报道不尽一致。本文从吸附实验测定和理论计算模拟方面综述了各种结构类型沸石的吸附储氢的研究结果。重点分析了沸石的结构类型、硅铝比、阳离子类型及吸附实验条件差异对储氢量的影响,并讨论了超临界吸附理论模型的发展状况,最后探讨了沸石作为储氢材料的可行性和发展方向。  相似文献   

13.
There is broad scientific interest in lamellar zeolitic materials for a large variety of technological applications. The traditional synthetic methods towards two‐dimensional (2D) zeolitic precursors have made a great impact in the construction of families of related zeolites; however, the connection between structurally distinct 2D zeolitic precursors is much less investigated in comparison, thereby resulting in a synthetic obstacle that theoretically limits the types of zeolites that can be constructed from each layer. Herein, we report a Ge‐recycling strategy for the topotactic conversion between different 2D zeolitic precursors through a three‐dimensional (3D) germanosilicate. Specifically, the intermediate germanosilicate can be constructed within 150 min by taking advantage of its structural similarity with the parent lamellar precursor. This process enables the conversion of one 2D zeolite structure into another distinct structure, thus overcoming the synthetic obstacle between two families of zeolitic materials.  相似文献   

14.
从工业催化的角度思考和探讨了分子筛催化剂合成、催化及应用方面存在的一些问题与挑战, 并从沸石分子筛的高效催化、新结构分子筛合成与催化应用、沸石分子筛的经济合成、分子筛在绿色环保领域的新应用等几个方面, 综述了国内外相关的最新研究进展, 探讨了分子筛催化剂未来的发展方向. 旨在引发人们对分子筛催化未来向经济、可控、高效催化、绿色环保和新应用等方面发展的思考与探索.  相似文献   

15.
Optimized structural parameters, framework energies relative to alpha-quartz, and volumes accessible to sorption have been calculated for the systematically enumerated hypothetical uninodal zeolitic structures (structures in which all tetrahedral sites are equivalent). The structures were treated as silica polymorphs, and their energies were minimized using the GULP program with the Sanders-Catlow silica potential. Results are given for 164 structures, which include all 21 known uninodal zeolites, two known minerals (tridymite and cristobalite), and 78 unknown zeolite topologies. Twenty-three hypothetical structures were identified as chemically feasible. Complete structural information is provided, and several structures are discussed in detail. The results will assist in the design of new synthetic routes and in the identification of newly synthesized materials.  相似文献   

16.
Two novel gallium fluorodiphosphates have been isolated and their structures solved ab initio from powder X-ray diffraction data; the materials readily interconvert under hydrothermal conditions, and are metastable with respect to an open-framework zeolitic gallium fluorophosphate, during the synthesis of which they are present as transient intermediates.  相似文献   

17.
等级孔分子筛是一类具有两种或多种以特定形式排布的孔结构的分子筛材料. 多层等级的孔结构使得分子筛孔道内的分子扩散得到显著改善, 进而提升了其在吸附和非均相催化等领域的应用性能. 等级孔分子筛的制备策略通常有两种, 即“自上而下”后处理法(如对母样分子筛进行脱铝、 脱硅产生介孔)和“自下而上”合成法(如软模板、 硬模板法). 本文主要对近20年来等级孔分子筛的合成方法进行了梳理, 并着重介绍了具有较高应用潜力的“自上而下”制备法. 鉴于合成等级孔分子筛的主要目的是提高分子的晶内扩散, 对近年来客体分子在等级孔分子筛内扩散的实验研究也进行了简要综述. 此外, 本文还综合评述了等级孔分子筛与传统分子筛在催化应用中的对比, 以展示前者在提升催化性能方面(如活性、 选择性等)的独特优势.  相似文献   

18.
In silico prediction of potential synthetic targets is the prerequisite for function-led discovery of new zeolites. Millions of hypothetical zeolitic structures have been predicted via various computational methods, but most of them are experimentally inaccessible under conventional synthetic conditions. Screening out unfeasible structures is crucial for the selection of synthetic targets with desired functions. The local interatomic distance (LID) criteria are a set of structure rules strictly obeyed by all existing zeolite framework types. Using these criteria, many unfeasible hypothetical structures have been detected. However, to calculate their LIDs, all hypothetical structures need to be fully optimized without symmetry constraints. When evaluating a large number of hypothetical structures, such calculations may become too computationally expensive due to the forbiddingly high degree of freedom. Here, we propose calculating LIDs among structures optimized with symmetry constraints and using them as new structure evaluation criteria, i.e., the LIDsym criteria, to screen out unfeasible hypothetical structures. We find that the LIDsym criteria can detect unfeasible structures as many as the original non-symmetric LID criteria do, yet require at least one order of magnitude less computation at the initial geometry optimization stage.  相似文献   

19.
Organic diradicaloids have unusual open-shell nature and properties and are promising materials for organic electronics, spintronics, energy storage and nonlinear optics. In this review, we focus on indeno-type organic diradicaloids and summarize their molecular design and synthesis, as well as topological structures, open-shell characters and diradical properties. The molecular systems are classified into indenofluorenes and diindenoacenes, indeno-based molecules with one-dimensional, two-dimensional and unique topological structures, and heterocyclic indeno-based molecules. By constructing these various topological π-skeletons with tunable conjugation modes and variation of atomic composition, their key open-shell parameters, such as diradical characters and singlet-triplet energy gaps, along with the optical, electronic and magnetic properties, as well as stabilities are efficiently modulated. More attention may be paid to accurate computational analysis, rational design and synthesis, and novel functions of indeno-type diradicaloids, which will promote the development of radical chemistry and materials.  相似文献   

20.
赵侦超  张维萍 《物理化学学报》2016,32(10):2475-2487
二维层状分子筛前驱体具有三维分子筛的层结构单元,具备母体分子筛的特性,其开放二维片层骨架结构给合成新分子筛以及基于其改性得到新衍生结构分子筛提供新机遇,是近年来分子筛研究领域一个新热点。大量二维片层前驱体可直接合成或通过三维分子筛后处理获得,基于二维片层前驱体人们发展了溶胀、剥层、柱撑、原子扩孔、层重组等层操纵的策略,通过这些策略一些常规方法难以合成或不符合理论规则的分子筛被合成出来,这极大地丰富了二维层状分子筛前驱体的研究领域,扩展了其应用范围。本文概述了二维层状分子筛前驱体的结构特点,系统总结了近年来二维层状分子筛前驱体的合成方法,在此基础上着重阐述了其改性获得新结构分子筛的新策略,并介绍了在多相催化反应中的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号