首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Honeycomb catalysis: a facile oxygen reduction reaction has been observed on a graphitic C(3)N(4)/carbon catalyst with three-dimensional interconnected macropores (see picture with SiO(2) template). This material not only shows catalytic activity that is comparable to that of commercial Pt/C, but also has much higher organic-fuel tolerance and long-term stability.  相似文献   

2.
3.
4.
Cross‐coupling reactions mediated by dual nickel/photocatalysis are synthetically attractive but rely mainly on expensive, non‐recyclable noble‐metal complexes as photocatalysts. Heterogeneous semiconductors, which are commonly used for artificial photosynthesis and wastewater treatment, are a sustainable alternative. Graphitic carbon nitrides, a class of metal‐free polymers that can be easily prepared from bulk chemicals, are heterogeneous semiconductors with high potential for photocatalytic organic transformations. Here, we demonstrate that graphitic carbon nitrides in combination with nickel catalysis can induce selective C?O cross‐couplings of carboxylic acids with aryl halides, yielding the respective aryl esters in excellent yield and selectivity. The heterogeneous organic photocatalyst exhibits a broad substrate scope, is able to harvest green light, and can be recycled multiple times. In situ FTIR was used to track the reaction progress to study this transformation at different irradiation wavelengths and reaction scales.  相似文献   

5.
苯酚是一种重要的化工原料,目前苯酚的工业生产路线普遍存在工艺流程复杂、苯酚收率低和环境污染严重等问题.为实现苯酚的绿色生产,苯直接氧化制苯酚的合成路线受到各国研究者的广泛关注.在苯直接羟基化反应常用的 N2O, O2和 H2O2三类氧化剂中, N2O由于来源有限,其工业应用受到极大限制;而 O2不易活化,且反应过程中常需还原剂存在,苯酚收率低;相比之下, H2O2作为氧化剂,其唯一副产物是 H2O,而且反应条件温和,因而以 H2O2为氧化剂的苯羟基化反应是最具工业应用前景的苯酚合成路线.然而,由于苯分子中的 C?H键非常稳定,活化能较高,同时产物苯酚的反应活性要高于反应物苯,因此,为实现苯的高效转化,积极探索研究高活性和稳定性的催化剂变得尤为重要.在我们之前的研究中发现,包含大π体系的氧化石墨烯载体有利于具有同样π共轭体系的反应物苯的吸附,进而促进苯的转化,提高反应活性.而石墨相氮化碳(g-C3N4)具有与氧化石墨烯类似的π共轭体系,且表面具有大量的活性位点和缺陷位,对苯环类物质具有较好的活化作用,这使其可能成为更优异的载体材料.基于此,以 g-C3N4为载体,采用浸渍法制备了一系列不同钒含量的催化剂xV/g-C3N4,并通过 XRD, FT-IR, TEM, TG等表征技术对催化剂进行了系统研究,以期揭示催化剂结构与反应活性之间的构效关系. XRD的表征结果表明,xV/g-C3N4仍具有载体 g-C3N4的层状堆积结构,且该结构不受钒负载量变化的影响.同时, xV/g-C3N4中钒物种的分散度较高,未发生团聚晶化.更直观地,通过 TEM观察发现,xV/g-C3N4中的钒物种均匀分散. FT-IR的表征结果说明钒物种与 g-C3N4之间存在较强的相互作用.此外,通过 TG表征发现, g-C3N4高温稳定性较好,即使焙烧温度高达550°C,其结构仍不受影响.综上所述,在xV/g-C3N4催化剂中,载体 g-C3N4的结构非常稳定,经负载钒物种以及焙烧处理后仍能保持不变;而钒物种与 g-C3N4之间存在较强的相互作用,且均匀分散,使催化剂具有较高的稳定性和较好的催化性能.在以 H2O2为氧化剂,80 wt%醋酸溶液为溶剂的苯直接氧化制苯酚反应中,xV/g-C3N4催化剂显示了良好的催化活性,其中反应活性最高的是8V/g-C3N4催化剂,在最佳反应条件下,苯酚的收率和选择性分别达到24.4%和99.2%.同时,通过计算 TOF值发现,8V/g-C3N4的 TOF值高达13.1 h-1,远高于文献中报道的以 C3N4为载体的催化剂的 TOF值(0.52–0.59 h-1),这表明xV/g-C3N4催化剂具有优异的催化活性.此外,以8V/g-C3N4为代表又进一步考察了催化剂的稳定性,在回收重复实验中催化剂的活性保持稳定.  相似文献   

6.
7.
Highly basic MgO nanoparticles with different sizes have been successfully immobilized over mesoporous carbon with different pore diameters by a simple wet-impregnation method. The prepared catalysts have been characterized by various sophisticated techniques, such as XRD, nitrogen adsorption, electron energy loss spectroscopy, high-resolution TEM, X-ray photoelectron spectroscopy, and the temperature-programmed desorption of CO(2). XRD results reveal that the mesostructure of the support is retained even after the huge loading of MgO nanoparticles inside the mesochannels of the support. It is also demonstrated that the particle size and dispersion of the MgO nanoparticles on the support can be finely controlled by the simple adjustment of the textural parameters of the supports. Among the support materials studied, mesoporous carbon with the largest pore diameter and large pore volume offered highly crystalline small-size cubic-phase MgO nanoparticles with a high dispersion. The basicity of the MgO-supported mesoporous carbons can also be controlled by simply changing the loading of the MgO and the pore diameter of the support. These materials have been employed as heterogeneous catalysts for the first time in the selective synthesis of sulfinamides. Among the catalysts investigated, the support with the large pore diameter and high loading of MgO showed the highest activity with an excellent yield of sulfinamides. The catalyst also showed much higher activity than the pristine MgO nanoparticles. The effects of the reaction parameters, including the solvents and reaction temperature, and textural parameters of the supports in the activity of the catalyst have also been demonstrated. Most importantly, the catalyst was found to be highly stable, showing excellent activity even after the third cycle of reaction.  相似文献   

8.
铂单原子作为一种新型催化剂,具有活性组分高度分散、配位未饱和以及原子利用率高等特点,在光催化还原CO2方面表现出巨大潜力.但是由于成本高昂和负载量高等因素,极大地限制了其在实际生产中的广泛应用.合成具有低负载量贵金属铂,同时提高铂基单原子催化剂的催化活性仍然是一项巨大挑战.晶化石墨相氮化碳的二维结构,特别是其稳定晶化结构所形成的限域环境及其可扩展的π共轭单元,可以有效锚定金属单原子,因而可作为金属单原子的良好载体.已有的金属单原子载体氮化碳多为弱晶或非晶结构,基于晶化氮化碳的高结晶度和高结构稳定性,合理构建金属单原子沉积的结晶石墨相氮化碳体系仍十分困难.关于晶化氮化碳负载金属单原子催化剂应用于光催化还原CO2的研究至今鲜有报道.本文开发了一种具有低负载量的铂基双单原子锚定晶化氮化碳的制备方法,通过设计氮化碳缺陷位点,在晶化石墨相氮化碳载体表面构筑氮缺陷位点,利用载体的丰富氮缺陷作为陷阱,有效捕获双单原子金属前驱体,成功制备了具有低负载量(铂为0.32wt%)的双金属铜铂单原子催化剂,并用于光催化CO2还原反应中.结果表明,相比于单原子铂催化剂和单原子铜催化剂,该种双单原子铜铂体系在光催化还原CO2-CO中表现了更好催化活性.在光照3.5 h后,铜铂双单原子体系的CO产量达到41.1μmolg-1.除此之外,铜铂双单原子体系在光催化过程中有利于促进CH4生成,在没有任何牺牲剂或共催化剂作用下其CH4的产量为9.8μmolg-1,其产率分别是相同光照条件下单原子铂催化剂(3.2μmolg-1)和单原子铜催化剂(2.0μmol g-1)的三倍和五倍.高分辨透射电镜结果表明,制备的氮化碳呈现了高度晶化的结构.球差扫描透射电子显微镜结果表明,铂和铜物种分别以高度分散的单原子形式存在,且在双金属铜铂单原子体系并未发现铜颗粒和铂颗粒.电化学分析结果表明,通过双配位活性位点的桥梁作用提高光生电子的转移效率,使得铜铂双单原子体系具有更高的电流密度和更好的载流子传输能力.原位X射线光电子能谱结果表明,金属铂和铜单原子成功负载在晶化石墨相氮化碳上,且在光照过程中单原子铂和铜的结合能的电子密度有些许改变,证明了该双金属单原子体系在光催化过程中协同动态光电子的迁移转移;原位红外傅里叶变换光谱实验结果表明,这种稳定的铜铂双单原子体系有利于促进催化还原反应中中间体产物的加氢过程,对终产物的解离和释放有明显的促进作用,从而提高光催化还原CO2反应的活性和选择性.  相似文献   

9.
Surface organometallic chemistry is an area of heterogeneous catalysis which has recently emerged as a result of a comparative analysis of homogeneous and heterogeneous catalysis. The chemical industry has often favored heterogeneous catalysis, but the development of better catalysts has been hindered by the presence of numerous kinds of active sites and also by the low concentration of active sites. These factors have precluded a rational improvement of these systems, hence the empirical nature of heterogeneous catalysis. Catalysis is primarily a molecular phenomenon, and it must involve well-defined surface organometallic intermediates and/or transition states. Thus, one must be able to construct a well-defined active site, test its catalytic performance, and assess a structure-activity relationship, which will be used, in turn-as in homogeneous catalysis-to design better catalysts.By the transfer of the concepts and tools of molecular organometallic chemistry to surfaces, surface organometallic chemistry can generate well-defined surface species by understanding the reaction of organometallic complexes with the support, which can be considered as a rigid ligand. This new approach to heterogeneous catalysis can bring molecular insight to the design of new catalysts and even allow the discovery of new reactions (Ziegler-Natta depolymerization and alkane metathesis). After more than a century of existence, heterogeneous catalysis can still be improved and will play a crucial role in solving current problems. It offers an answer to economical and environmental problems faced by industry in the production of molecules (agrochemicals, petrochemicals, pharmaceuticals, polymers, basic chemicals).  相似文献   

10.
Cu nanoparticles with average particles size around 10 nm were incorporated on the surface of a mesoporous carbon nitride support. The XRD and N2 adsorption isotherms show that it maintains a hexagonal mesoporous structure with a high surface area (600.03 m2 g?1). The embedded Cu nanoparticles exhibit extremely high catalytic performance in two different kinds of organic reactions. The Huisgen 1,3‐dipolar cycloaddition and N‐arylation of N‐heterocycles were all accomplished.  相似文献   

11.
12.
高活性低成本氧还原反应(ORR)电催化剂是燃料电池和金属/空气电池等可再生能源技术的关键组成部分.在离子液体[(C16mim)2CuCl4]和质子化的石墨化氮化碳(g-CN)的存在下,采用简易的水热反应制备了Cu/g-CN电催化剂用于ORR.与纯的g-CN相比,所制Cu/g-CN表现出高的ORR催化活性:起始电势正移99 mV,为2倍动力学电流密度.另外,Cu/g-CN还表现出比商用Pt/C(HiSPECTM 3000,20%)催化剂更好的稳定性和甲醇容忍性.因此,该催化剂作为廉价的高效ORR电催化剂有望应用于燃料电池中.  相似文献   

13.
14.
Solar‐light‐driven H2 production in water with a [NiFeSe]‐hydrogenase (H2ase) and a bioinspired synthetic nickel catalyst (NiP) in combination with a heptazine carbon nitride polymer, melon (CNx), is reported. The semibiological and purely synthetic systems show catalytic activity during solar light irradiation with turnover numbers (TONs) of more than 50 000 mol H2 (mol H2ase)?1 and approximately 155 mol H2 (mol NiP)?1 in redox‐mediator‐free aqueous solution at pH 6 and 4.5, respectively. Both systems maintained a reduced photoactivity under UV‐free solar light irradiation (λ>420 nm).  相似文献   

15.
A strong red fluorescent nanocomposite, consisting of graphite-like carbon nitride nanosheets (g-C3N4 NSs) and serum albumin-capped Au nanoclusters (AuNCs), was synthesized. Dopamine (DA) can quench the red fluorescence of the nanocomposite, based on the Forster resonance energy transfer (FRET) mechanism. In this quenching process, the energy is transferred from the fluorescent g-C3N4 NSs-AuNCs to the oxidized DA quinine molecules (DA is easily oxidated to form DA quinine in air). The red fluorescence emission at 420 nm decreases dramatically and the quenching ratio (F0F)/F0 is linearly related to the concentration of DA in the range of 0.05–8.0 μmol L−1 with a detection limit of 0.018 μmol L−1 (S/N = 3). Additionally, this sensor has a potential of application to assay the DA in the real samples, such as human serum and human urine.  相似文献   

16.
17.
18.
薛冰  陈晔  洪颖  马丁阳  许杰  李永昕 《催化学报》2018,39(7):1263-1271
苯酚是一种重要的基本有机化工原料.全球近90%的苯酚都是经"三步异丙苯法"工艺合成而得,但是该工艺存在单程苯酚收率低(5%)、酸污染严重等不足.同时由于联产丙酮,苯酚的产量也受丙酮市场所制约.由苯经氧化或羟基化一步法合成苯酚是催化化学领域中一项极具挑战的课题.由于苯分子较难活化,而苯酚易于深度氧化,因此研发和设计具有高活性和高选择性的催化剂是该课题的研究核心.因具有诸多特殊的理化性质,石墨相氮化碳(g-C_3N_4)作为一种新型碳质材料近年来在光催化、热催化、燃料电池和气体吸附等领域展示出广阔的应用前景.g-C_3N_4的类石墨层基本单元为大π共轭的三均三嗪环,对苯分子具有良好的吸附和活化能力.目前,g-C_3N_4(尤其是具有高比表面的介孔材料)在苯Friedel-Crafts烷基化和酰基化反应、苯的CO2氧化等反应中均显示了良好的催化活性.尽管如此,由于缺乏合适的氧化活性中心,纯的g-C_3N_4对苯直接羟基化几乎无催化活性.本课题组曾将乙酰丙酮氧钒和氧化钒负载至介孔g-C_3N_4,发现该类催化剂在H2O2参与的苯直接羟基化反应中,苯转化率高达18%,而苯酚选择性大于95%.然而,此类介孔g-C_3N_4均采用硬模板法合成,制备周期长且需要HF溶液蚀刻氧化硅模板.另外,钒基组分在介孔g-C_3N_4表面也存在着部分溶脱现象.本文以FeCl_3和二氰二胺为前驱体,通过一步热解法直接合成了含铁的g-C_3N_4材料(Fe-g-C_3N_4).采用N2吸附-脱附、XRD、TG、FT-IR、UV-vis、XPS光谱和TEM对材料的理化性质进行表征.结果显示,Fe的原位引入能显著提高g-C_3N_4的比表面积和孔体积,且使其依然保持石墨相结构.同时,富N的g-C_3N_4材料能有效地锚定Fe离子,使其均匀地分散在载体表面.作为多相催化剂,Fe-g-C_3N_4在H_2O_2环境下对苯羟基化合成苯酚的反应表现出较高的催化活性.当反应温度为60°C,其苯酚收率最高可达17.5%,且回收使用多次催化剂活性表现稳定.与之前报道的含铁和负载氧化钒或乙酰丙酮氧钒的g-C_3N_4催化剂材料相比,Fe-g-C_3N_4催化剂制备工艺更加简便.  相似文献   

19.
The replacement of toxic Cr(VI) for O2 and of chlorinated solvents for supercritical carbon dioxide (or ionic liquids) in the oxidation of alcohols remains hindered by the low selectivity and activity of the current heterogeneous catalysts. Using an integrated approach that combines sol-gel entrapped perruthenate as aerobic catalyst, an encapsulated ionic liquid as solubility promoter, and scCO2 as the reaction solvent, we have developed a system capable of rapidly converting different alcohols into carbonyl compounds with complete selectivity, including substrates which are otherwise difficult to oxidise. The methodology is generally applicable and may easily be extended to other waste-free, catalytic syntheses of fine chemicals.  相似文献   

20.
Nowadays, the alarming growing interest in providing a solution to increasing concentration of atmospheric carbon dioxide (CO2) and the associated pollution has attracted global attention. The consequential effects of CO2 are detrimental to the environment owing to the continuous depletion of carbon-emitting fossil fuels. Photocatalytic CO2 reduction (CO2R) to valuable chemicals and fuels is one the promising alternative option to mitigate the global menace instigated by CO2 emissions. If the strategies for enhancing the CO2R are unavailable, inefficient, or inappropriate, then efficiency conversion CO2 to valuable products can become problematic. In that case, the emission of CO2 results in synchronizing upsurge in the global-mean air surface temperature on the earth and sea levels from 1980 to 2100. This study presents different strategies for boosting the photocatalytic performance of 2D graphitic carbon nitride (g-C3N4) for CO2R reaction. The first part consists of the fundamental principles of photocatalysis. The second part presents some answers to the question: what governs the mechanism of photocatalytic CO2R? The existing literature lack comprehensive information about the strategical influence of available reactor designs on the photoactivity of 2D g-C3N4 for CO2 conversion to energy-rich chemicals and ways to improve them as discussed in this study. This was then followed by strategies about the synthetic methods for enhancing photocatalytic CO2R over 2D g-C3N4 materials before the discussion of the strategies for enhancing the CO2 photoreduction on the 2D g-C3N4 nanomaterials. Some groups of g-C3N4 nanomaterials for photoreduction of CO2R were also discussed. Unlike the previous reviews in the field, the present study presents some innovation to bridge the knowledge gaps of the previous reviews and corresponding insight thereof. For future breakthroughs, this study also explains some problems with the interpretation in the field. We also highlight insights into innovation on exclusion and inclusion criteria about the performance metrics and present some queries, concerns, and problems with the previous studies. The concluding part consists of research outlooks, including commonly overlooked challenges and future perspectives for ensuring highly efficient strategies, applications of 2D g-C3N4 photocatalysts, and CO2 conversion to meet industrial scale expectations. The present study hypothesized that considering the current technological age, the experiment should go beyond presenting only illustration and analysis about the band energy, but the detailed explanation/information about the pathways of the various products formed using molecular dynamics system and artificial intelligence aspects should be combined in the future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号