首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of the binary, pseudo‐homoatomic Zintl anion (Pb2Bi2)2? with Ln(C5Me4H)3 (Ln=La, Ce, Nd, Gd, Sm, Tb) in the presence of [2.2.2]crypt in ethane‐1,2‐diamine/toluene yielded ten [K([2.2.2]crypt)]+ salts of lanthanide‐doped semimetal clusters with 13 or 14 surface atoms. Single‐crystal X‐ray diffraction and energy‐dispersive Xray spectroscopy indicated the presence of the anions [Ln@Pb6Bi8]3?, [Ln@Pb3Bi10]3?, [Ln@Pb7Bi7]4?, or [Ln@Pb4Bi9]4? in single or double salts; the latter showed various ratios of the components in the solid state. The anions are the first ternary intermetalloid clusters comprising only elements of the sixth period of the periodic table, namely, Pb, Bi and lanthanides. This study, which was complemented by ESI mass spectrometry and 139La NMR spectroscopy in solution, rationalizes a continuous development of the ratio of 13:14‐atom cages with the ionic radius of the embedded Ln3+ ion, which seems to select the most suitable cage type. Quantum chemical investigations helped to analyze this situation in more detail and to explain the observed subtle influence of the atomic radii. Magnetic measurements confirmed that the embedded Ln3+ ions keep their expected paramagnetic or diamagnetic nature.  相似文献   

2.
Wang X  Guo Y  Li Y  Wang E  Hu C  Hu N 《Inorganic chemistry》2003,42(13):4135-4140
The spherical Lindquist type polyoxometalate, Mo(6)O(19)(2)(-), has been used as a noncoordinating anionic template for the construction of novel three-dimensional lanthanide-aromatic monocarboxylate dimer supramolecular networks [Ln(2)(DNBA)(4)(DMF)(8)][Mo(6)O(19)] (Ln = La 1, Ce 2, and Eu 3, DNBA = 3,5-dinitrobenzoate, DMF = dimethylformamide). The title compounds are characterized by elemental analyses, IR, and single-crystal X-ray diffractions. X-ray diffraction experiments reveal that two Ln(III) ions are bridged by four 3,5-dinitrobenzoate anions as asymmetrically bridging ligands, leading to dimeric cores, [Ln(2)(DNBA)(4)(DMF)(8)](2+); [Ln(2)(DNBA)(4)(DMF)(8)](2+) groups are joined together by pi-pi stacking interactions between the aromatic groups to form a two-dimensional grid-like network; the 2-D supramolecular layers are further extended into 3-D supramolecular networks with 1-D box-like channels by hydrogen-bonding interactions, in which hexamolybdate polyanions reside. The compounds represent the first examples of 3-D carboxylate-bridged lanthanide dimer supramolecular "host" networks formed by pi-pi stacking and hydrogen-bonding interactions encapsulating noncoordinating "guest" polyoxoanion species. The fluorescent activity of compound 3 is reported.  相似文献   

3.
The reaction of Na(12)[Bi(2)W(22)O(74)(OH)(2)]·44H(2)O, Na(9)[BiW(9)O(33)]·16H(2)O, lanthanide chloride and Na(2)CO(3) in aqueous solution at a pH value of about 7.0 resulted in the three unprecedented giant lanthanide-tungstobismuthate clusters Na(x)H(22-x)[(BiW(9)O(33))(4)(WO(3)){Bi(6)(μ(3)-O)(4)(μ(2)-OH)(3)}(Ln(3)(H(2)O)(6)CO(3))]·nH(2)O {Ln = Pr(3+) (1), Nd(3+) (2), La(3+) (3), x = 22 (1), 22 (2), 20 (3), n = 95 (1), 91 (2), 73 (3)}. These three complexes represent the first examples of lanthanide ions encapsulated in polyoxotungstobismuthates and the largest polytungstobismuthates so far. Furthermore, a [{Bi(6)(μ(3)-O)(4)(μ(2)-OH)(3)}](7+) polyoxo cation was incorporated into the structure of these compounds. All complexes are characterized by single-crystal X-ray diffraction, IR spectra, electronic spectroscopy, thermogravimetric and elemental analysis. Magnetic investigation revealed that the progressive depopulation of excited Stark sublevels of the lanthanide ions at low temperature and the weak antiferromagnetic interaction between the neighboring metal centres are responsible for the magnetic properties of 1 and 2. The original synthesis strategy in this work may open a gateway to assembly of large lanthanide-tungstobismuthates clusters and novel multifunctional solid materials in aqueous solution under mild conditions.  相似文献   

4.
Wang R  Liu H  Carducci MD  Jin T  Zheng C  Zheng Z 《Inorganic chemistry》2001,40(12):2743-2750
Tetranuclear lanthanide-hydroxo complexes of the general formula [Ln(4)(mu(3)-OH)(4)(AA)(x)(H(2)O)(y)](8+) (1, Ln = Sm, AA = Gly, x = 5, y = 11; 2, Ln = Nd, AA = Ala, x = 6, y = 10; 3, Ln = Er, AA = Val, x = 5, y = 10) have been prepared by alpha-amino acid controlled hydrolysis of lanthanide ions under near physiological pH conditions (pH 6-7). The core component of these compounds is a cationic cluster [Ln(4)(mu(3)-OH)(4)](8+) whose constituent lanthanide ions and triply bridging hydroxo groups occupy the alternate vertexes of a distorted cube. The amino acid ligands coordinate the lanthanide ions via bridging carboxylate groups. Utilizing L-glutamic acid as the supporting ligand, a cationic cluster complex (4) formulated as [Er(4)(mu(3)-OH)(4)(Glu)(3)(H(2)O)(8)](5+) has been obtained. Its extended solid-state structure is composed of the cubane-like [Er(4)(mu(3)-OH)(4)](8+) cluster building units interlinked by the carboxylate groups of the glutamate ligands. All compounds are characterized by using a combination of spectroscopic techniques and microanalysis (CHN and metal). Infrared spectra of the complexes suggest the coordinated amino acids to be zwitterionic. The presence of mass (MALDI-TOF) envelopes corresponding to the [Ln(4)(mu(3)-OH)(4)](8+) (Ln = trivalent Sm, Nd, or Er) core containing fragments manifests the integrity of the cubane-like cluster unit. Magnetic studies using Evans' method suggest that exchange interactions between the lanthanide ions are insignificant at ambient temperature. The structural identities of all four compounds have been established crystallographically. The tetranuclear cluster core has been demonstrated to be a common structural motif in these complexes. A mechanism responsible for its self-assembly is postulated.  相似文献   

5.
The solvothermal reactions of Ti(OEt)(4) with LnCl(3) (Ln=La, Ce) produced new Ti(28) Ln cages, in which the Ln(3+) ions are coordinated within a metallocrown arrangement, which represents the highest nuclearity cages of this type.  相似文献   

6.
The [ε-PMo(V)(8)Mo(VI)(4)O(36)(OH)(4){Ln(III)(H(2)O)}(4)](5+) (Ln=La, Ce, Nd, Sm) polyoxocations, called εLn(4), have been synthesized at room temperature as chloride salts soluble in water, MeOH, EtOH, and DMF. Rare-earth metals can be exchanged, and (31)P NMR spectroscopic studies have allowed a comparison of the affinity of the reduced {ε-PMo(12)} core, thus showing that the La(III) ions have the highest affinity and that rare earths heavier than Eu(III) do not react with the ε-Keggin polyoxometalate. DFT calculations provide a deeper insight into the geometries of the systems studied, thereby giving more accurate information on those compounds that suffer from disorder in crystalline form. It has also been confirmed by the hypothetical La→Gd substitution reaction energy that Ln ions beyond Eu cannot compete with La in coordinating the surface of the ε-Keggin molybdate. Two of these clusters (Ln=La, Ce) have been tested to evidence that such systems are representative of a new efficient Lewis acid catalyst family. This is the first time that the catalytic activity of polyoxocations has been evaluated.  相似文献   

7.
The reaction of [Mo(3)S(4)(H(2)O)(9)](4+) with Bi(III) in the presence of BH(4)(-) (rapid), or with Bi metal shot (3-4 days), gives a heterometallic cluster product. The latter has been characterized as the corner-shared double cube [Mo(6)BiS(8)(H(2)O)(18)](8+) by the following procedures. Analyses by ICP-AES confirm the Mo:Bi:S ratio as 6:1:8. Elution from a cation-exchange column by 4 M Hpts (Hpts = p-toluenesulfonic acid), but not 2 M Hpts (or 4 M HClO(4)), is consistent with a high charge. The latter is confirmed as 8+ from the 3:1 stoichiometries observed for the oxidations with [Co(dipic)(2)](-) or [Fe(H(2)O)(6)](3+) yielding [Mo(3)S(4)(H(2)O)(9)](4+) and Bi(III) as products. Heterometallic clusters [Mo(6)MS(8)(H(2)O)(18)](8+) are now known for M = Hg, In, Tl, Sn, Pb, Sb, and Bi and are a feature of the P-block main group metals. The color of [Mo(6)BiS(8)(H(2)O)(18)](8+) in 2.0 M Hpts (turquoise) is different from that in 2.0 M HCl (green-blue). Kinetic studies (25 degrees C) for uptake of a single chloride k(f) = 0.80 M(-)(1) s(-)(1), I = 2.0 M (Hpts), and the high affinity for Cl(-) (K > 40 M(-)(1)) exceeds that observed for complexing at Mo. A specific heterometal interaction of the Cl(-) not observed in the case of other double cubes is indicated. The Cl(-) can be removed by cation-exchange chromatography with retention of the double-cube structure. Kinetic studies with [Co(dipic)(2)](-) and hexaaqua-Fe(III) as oxidants form part of a survey of redox properties of this and other clusters. The Cl(-) adduct is more readily oxidized by [Co(dipic)(2)](-) (factor of approximately 10) and is also more air sensitive.  相似文献   

8.
Reactions of ethylenediamine solutions of K4Bi5 with Ni(PPh3)2(CO)2 yielded four novel hetero-atomic Bi/Ni deltahedral clusters. Three of them, the 7-atom pentagonal bipyramidal [Bi3Ni4(CO)6]3-, the 8-atom dodecahedral [Bi4Ni4(CO)6]2-, and the Ni-centered or empty 12-atom icosahedral [Nix@[Bi6Ni6(CO)8]4-, are closo-species according to both electron count and shape. The centered icosahedral cluster resembles packing in intermetallic compounds and belongs to the emerging class of intermetalloid clusters. The shape of the fourth cluster, [Bi3Ni6(CO)9]3-, can be derived from the icosahedral Ni-centered [Ni@[Bi6Ni6(CO)8]4- by removal of three Bi- and one Ni-atoms of two neighboring triangular faces. The clusters were structurally characterized by single-crystal X-ray diffraction in compounds with potassium cations sequestered by 2,2,2-crypt or 18-crown-6 ether. They were also characterized in solution by electrospray mass spectrometry.  相似文献   

9.
Six 3D architectures based on lanthanide-substituted polyoxometalosilicates, KLn[(H(2)O)(6)Ln](2)[(H(2)O)(4)LnSiW(11)O(39)](2)·nH(2)O (Ln = La 1, n = 42; Ce 2, n = 40), H[(H(2)O)(6)Nd](2)[(H(2)O)(7)Nd][(H(2)O)(4)NdSiW(11)O(39)][(H(2)O)(3)NdSiW(11)O(39)]·13H(2)O (3), H(2)K(2)[(Hpic)(H(2)O)(5)Ln](2)[(H(2)O)(4)LnSiW(11)O(39)](2)·nH(2)O (Ln = La 4, n = 18.5; Ce 5, n = 35; Nd 6, n = 36; Hpic = 4-picolinic acid), have been synthesized and characterized by elemental analysis, IR and UV-vis spectroscopy, TG analysis, powder X-ray diffraction and single crystal X-ray diffraction. Compounds 1 and 2 are isostructural, built up of lanthanide-substituted polyoxoanions [{(H(2)O)(4)Ln(SiW(11)O(39))}(2)](10-) linked by Ln(3+) cations to form a 3D open framework with 1D channels. The polyoxoanion [{(H(2)O)(4)Ln(SiW(11)O(39))}(2)](10-) consists of two α(1)-type mono-Ln-substituted Keggin anions. When Nd(3+) ion was used instead of La(3+) or Ce(3+) ions, compound 3 with a different structure was obtained, containing two kinds of polyoxoanions [{(H(2)O)(4)Nd(SiW(11)O(39))}(2)](10-) and [{(H(2)O)(3)Nd(SiW(11)O(39))}(2)](10-) which are connected together by Nd(3+) ions to yield a 3D framework. When 4-picolinic acid was added to the reaction system of 1-3, isostructural compounds 4-6 were obtained, constructed from the polyoxoanions [{(H(2)O)(4)Ln(SiW(11)O(39))}(2)](10-) linked by picolinate-chelated lanthanide centers to form a 3D channel framework. From a topological viewpoint, the 3D nets of 1, 2, 4, 5 and 6 exhibit a (3,6)-connected rutile topology, whereas the 3D structure of 3 possesses a rare (3,3,6,10)-connected topology. The magnetic properties of 2, 3, 5 and 6 have been studied by measuring their magnetic susceptibilities in the temperature range 2-300 K.  相似文献   

10.
Lanthanide hydroxide cluster complexes with acetylacetonate were synthesized by the hydrolysis of the corresponding hydrated lanthanide acetylacetonates in methanol in the presence of triethylamine. Polymeric lanthanide hydroxide complexes based on diamond-shaped dinuclear repeating units of [Ln(2)(CH(3)CO(3))(2)](4+) (Ln = La, Pr) and discrete complexes featuring a tetranuclear distorted cubane core of [Ln(4)(μ(3)-OH)(2)(μ(3)-OCH(3))(2)](8+) (Ln = Nd, Sm) and a nonanuclear core of [Ln(9)(μ(4)-O)(μ(4)-OH)(μ(3)-OH)(8)](16+) (Ln = Eu-Dy, Er, Yb) were obtained. The dependence of the cluster nuclearity on the identity of the lanthanide ion is rationalized in terms of the influences of a metal ion's Lewis acidity and the sterics about the Ln-OH unit on the kinetics of the assembly process that leads to a particular cluster.  相似文献   

11.
The endohedral cluster anion [Pd(3)Sn(8)Bi(6)](4-) crystallizes as its K([2.2.2]crypt)(+) salt 1 upon reaction of [K([2.2.2]crypt)](2)[Sn(2)Bi(2)]·en and Pd(dppe)(2) in 1,2-diaminoethane (en)/toluene and incorporates a complete Pd(3) triangular cluster within a medium-size 14-vertex cage of Sn and Bi atoms. 1 was characterized by a combination of single crystal diffraction, ESI mass spectrometry, elemental analysis, and magnetic measurements. According to quantum chemical investigations, the Pd(3) triangle interacts only weakly with the Sn/Bi cluster shell despite the relatively small cavity inside the cage.  相似文献   

12.
The reaction of Mn and Cd in alkali metal polythioarsenate fluxes afforded four new compounds featuring molecular anions. K(8)[Mn(2)(AsS(4))(4)] (I) crystallizes in the monoclinic space group P2/n with a = 9.1818(8) A, b = 8.5867(8) A, c = 20.3802(19) A, and beta = 95.095(2) degrees. Rb(8)[Mn(2)(AsS(4))(4)] (II) and Cs(8)[Mn(2)(AsS(4))(4)] (III) both crystallize in the triclinic space group P1 with a = 9.079(3) A, b = 9.197(3) A, c = 11.219(4) A, alpha = 105.958(7) degrees, beta = 103.950(5) degrees, and gamma = 92.612(6) degrees for II and a = 9.420(5) A, b = 9.559(5) A, c = 11.496(7) A, alpha = 105.606(14) degrees, beta = 102.999(12) degrees, and gamma = 92.423(14) degrees for III. The discrete dimeric [Mn(2)(AsS(4))(4)](8-) clusters in these compounds are composed of two octahedral Mn(2+) ions bridged by two [AsS(4)](3-) units and chelated each by a [AsS(4)](3-) unit. Rb(8)[Cd(2)(AsS(4))(2)(AsS(5))(2)] (IV) crystallizes in P1 with a = 9.122(2) A, b = 9.285(2) A, c = 12.400(3) A, alpha = 111.700(6) degrees, beta = 108.744 degrees, and gamma = 90.163(5) degrees. Owing to the greater size of Cd compared to Mn, the Cd centers in this compound are bridged by [AsS(5)](3-) units. The [Cd(2)(AsS(4))(4)](8-) cluster is a minor component cocrystallized in the lattice. These compounds are yellow in color and soluble in water.  相似文献   

13.
Liu S  Li D  Xie L  Cheng H  Zhao X  Su Z 《Inorganic chemistry》2006,45(20):8036-8040
Reactions of 1:13 heteropoly anions [MV13O38](7-) (M = Mn, Ni) and lanthanide cations Ln3+ (Ln = La, Ce, or Pr) produce five isomorphic compounds, which are crystallized in the triclinic crystal system, space group P1, and formulated as [Ln6(H2O)25(MV12O38)(HMV13O38)].nH2O ((1) Ln = La, M = Mn, and n approximately 31; (2) Ln = Ce, M = Mn, and n approximately 29; (3) Ln = Pr, M = Mn, and n approximately 31; (4) Ln = La, M = Ni, and n approximately 28; (5) Ln = Pr, M = Ni, and n approximately 33). These compounds are two-dimensional polymeric structures constructed by hydrated lanthanide cations and two types of heteropoly anions, [MV13O38](7-) and [MV12O38](12-). In contrast to the previous reported 1:13 heteropoly anions, all with disordered structures, [MV13O38](7-) clusters in 1-5 are non-disordered with a distinct mode. The second kind of anionic cluster [MV12O38](12-) with O(h) symmetry, which consists of 13 entire edge-sharing MO(6) (M = V, Mn or Ni) octahedra, has not been reported hitherto. The emergence of the new cluster may be correlated to the six capping lanthanide cations surrounding it with a stabilization effect. In this paper, the syntheses and structures of the five polymeric lanthanide heteropolyvanadates of manganese(IV) and nickel(IV) have been presented.  相似文献   

14.
Two types of Ln(II)-Co(4) isocarbonyl polymeric arrays, [(Et(2)O)(3)(-)(x)()(THF)(x)()Ln[Co(4)(CO)(11)]]( infinity ) (1-3; x = 0, 1) and [(THF)(5)Eu[Co(4)(CO)(11)]]( infinity ) (4), were prepared and structurally characterized. Transmetalation involving Ln(0) and Hg[Co(CO)(4)](2) in Et(2)O yields [(Et(2)O)(3)Ln[Co(4)(CO)(11)]]( infinity ) (1, Ln = Yb; 2, Ln = Eu). Dissolution of the solvent-separated ion pairs [Ln(THF)(x)()][Co(CO)(4)](2) (Ln = Yb, x = 6; Ln = Eu) in Et(2)O affords [(Et(2)O)(2)(THF)Yb[Co(4)(CO)(11)]]( infinity ) (3) and [(THF)(5)Eu[Co(4)(CO)(11)]]( infinity ) (4). In these reactions, oxidation and condensation of the [Co(CO)(4)](-) anions result in formation of the new tetrahedral cluster [Co(4)(CO)(11)](2)(-). The two types of Ln(II)-Co(4) compounds contain different isomers of [Co(4)(CO)(11)](2)(-), and, consequently, the structures of the infinite isocarbonyl networks are distinct. The cluster in [(Et(2)O)(3)(-)(x)()(THF)(x)()Ln[Co(4)(CO)(11)]]( infinity ) (1-3) possesses pseudo C(3)(v)() symmetry (an apical Co, three basal Co atoms; one face-bridging, three edge-bridging, seven terminal carbonyls) and connects to Ln(II) centers through eta(2),micro(4)- and eta(2),micro(3)-carbonyls to generate a 2-D puckered sheet. In contrast, [(THF)(5)Eu[Co(4)(CO)(11)]]( infinity ) (4) incorporates a C(2)(v)() symmetric cluster (two unique Co environments; two face-bridging, one edge-bridging, eight terminal carbonyls), and isocarbonyl linkages (eta(2),micro(4)-carbonyls) to Eu(II) atoms create a 1-D zigzag chain. Complexes 1-4 contain the first reported eta(2),micro(4)-CO bridges between a Ln and a transition-metal carbonyl cluster. Infrared spectroscopic studies revealed that the isocarbonyl associations to Ln(II) persist in solution. The solution structure and dynamic behavior of the [Co(4)(CO)(11)](2)(-) cluster in 1 was investigated by variable-temperature (59)Co and (13)C NMR spectroscopies.  相似文献   

15.
31P solid-state nuclear magnetic resonance (NMR) spectra of 12 metal-containing selenophosphates have been examined to distinguish between the [P(2)Se(6)](4-), [PSe(4)](3-), [P(4)Se(10)](4-), [P(2)Se(7)](4-), and [P(2)Se(9)](4-) anions. There is a general correlation between the chemical shifts (CSs) of anions and the presence of a P[bond]P. The [P(2)Se(6)](4-) and [P(4)Se(10)](4-) anions both contain a P[bond]P and resonate between 25 and 95 ppm whereas the [PSe(4)](3-), [P(2)Se(7)](4-), and [P(2)Se(9)](4-) anions do not contain a P[bond]P and resonate between -115 and -30 ppm. The chemical shift anisotropies (CSAs) of compounds containing [PSe(4)](3-) anions are less than 80 ppm, which is significantly smaller than the CSAs of any of the other anions (range: 135-275 ppm). The smaller CSAs of the [PSe(4)](3-) anion are likely due to the unique local tetrahedral symmetry of this anion. Spin-lattice relaxation times (T(1)) have been determined for the solid compounds and vary between 20 and 3000 s. Unlike the CS, T(1) does not appear to correlate with P-P bonding. (31)P NMR is also shown to be a good method for impurity detection and identification in the solid compounds. The results of this study suggest that (31)P NMR will be a useful tool for anion identification and quantitation in high-temperature melts.  相似文献   

16.
Hydrothermal reactions of isonicotinic acid (Hina), 2-sulfobenzoic acid (H(2)sba), d-block metal salts and lanthanide oxides/hydroxides yielded 17 three-dimensional (3D) 3d-4f and 4d-4f heterometallic coordination polymers (HCPs). They are formulated as [LaAg(sba)(ina)(2)](n) (1), [Ln(2)Ag(2)(sba)(2)(ina)(4)(H(2)O)(2)](n) [Ln = Pr (2), Nd (3), Sm (4), Eu (5), Gd (6), Tb (7), Dy (8), Ho (9), Er (10)] and [Ln(2)Cu(2)(sba)(2)(ina)(4)(H(2)O)(2)](n) [Ln = La (11), Pr (12), Nd (13), Sm (14), Eu (15), Gd (16), Tb (17)]. Their structures were characterized by single crystal X-ray diffraction, powder X-ray diffraction (XRD), infrared (IR) spectroscopy, elemental analysis (EA), and thermogravimetric analysis (TGA). It reveals that they represent two structural types of 3D HCPs. Furthermore, the investigations of their solid-state photoluminescent (PL) property demonstrate the extraordinary emission behaviors. HCP 1(La-Ag) exhibits tunable blue-to-green PL emissions by variation of excitation light. HCPs 6(Gd-Ag), 11(La-Cu), 12(Pr-Cu) and 16(Gd-Cu) show d(10)-metal-based ligand-to-metal charge transfer (LMCT) or metal-to-ligand charge transfer (MLCT) emissions. HCPs 3(Nd-Ag), 4(Sm-Ag), 5(Eu-Ag), 7(Tb-Ag), 8(Dy-Ag), 13(Nd-Cu), 14(Sm-Cu), 15(Eu-Cu) and 17(Tb-Cu) display characteristic PL emissions of the corresponding Ln(III) ions, while both d(10)-metal-based and 4f-metal-centered emissions are observed in the emission spectra of 4(Sm-Ag), 8(Dy-Ag), 14(Sm-Cu) and 17(Tb-Cu).  相似文献   

17.
By using laser ablation of the mixtures of a transition metal (M: Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pd, Ag) plus lead, M/Pb binary cluster anions were observed except for Zn, and the number of transition metal atoms contained in the binary clusters is at most 4. This behavior is different from that reported previously for M/Ge binary clusters. The experiments indicate that it is also very difficult to form Al/Pb clusters. The distribution patterns of M/Pb binary alloy cluster anions are remarkably similar to those of pure Pb clusters, consistent with a formation mechanism in which transition metal atoms are sequentially attached to [M(x-1)Pb(y)](-) clusters and thus form [M(x)Pb(y)](-) clusters by a simple condensation process. As the number of transition metal atoms increases, the intensities of binary clusters gradually decrease. It is proposed that [MPb(4)](-) and [MPb(5)](-) cluster anions might be the unit building blocks of M/Pb binary cluster anions, and the layer packing sequences for magic clusters are predicted on this basis. The [M(x)Pb(y)](-) binary clusters containing 13 atoms (x + y = 13; x not equal 0) are proposed to have an icosahedral structure.  相似文献   

18.
Two polymorphs of the new cluster compound [Ru(2) Bi(14) Br(4) ](AlCl(4) )(4) have been synthesized from Bi(24) Ru(3) Br(20) in the Lewis acidic ionic liquid [BMIM]Cl/AlCl(3) ([BMIM](+) : 1-n-butyl-3-methylimidazolium) at 140?°C. A large fragment of the precursor's structure, namely the [(Bi(8) )Ru(Bi(4) Br(4) )Ru(Bi(5) )](5+) cluster, dissolved as a whole and transformed into a closely related symmetrical [(Bi(5) )Ru(Bi(4) Br(4) )Ru(Bi(5) )](4+) cluster through structural conversion of a coordinating Bi(8) (2+) to a Bi(5) (+) polycation, while the remainder was left intact. Both modifications have monoclinic unit cells that comprise two formula units (α form: P2(1) /n, a=982.8(2), b=1793.2(4), c=1472.0(3)?pm, β=109.05(3)°; β form: P2(1) /n, a=1163.8(2), b=1442.7(3), c=1500.7(3), β=97.73(3)°). The [Ru(2) Bi(14) Br(4) ](4+) cluster can be regarded as a binuclear inorganic complex of two ruthenium(I) cations that are coordinated by terminal Bi(5) (+) square pyramids and a central Bi(4) Br(4) ring. The presence of a covalent Ru?Ru bond was established by molecular quantum chemical calculations utilizing real-space bonding indicator ELI-D. Structural similarity of the new and parent cluster suggests a structural reorganization or an exchange of the bismuth polycations as mechanisms of cluster formation. In this top-down approach a complex-structured unit formed at high temperature was made available for low-temperature use.  相似文献   

19.
Reaction of Ce(III) with lacunary versions of [H(4)XW(18)O(62)](7-) (X = P, As) yields the 1:2 complexes [Ce(H(4)XW(17)O(61)](19-) (X = As, 1; P, 2) in good yield, characterized in solution and the solid state by NMR spectroscopy and X-ray crystallographic analysis, respectively. The structures confirm a syn C(2) conformation that is analogous to that observed for [Ln(alpha(2)-P(2)W(17)O(61))(2)](17-) but with "empty" O(4) tetrahedra that are in positions remote from the cerium atom. Bond valence sum calculations for these structures show that the four protons that are required for charge balance in all salts of the XW(18) anions and their lacunary derivatives are almost certainly bound to the oxygen atoms of the empty tetrahedra.  相似文献   

20.
One-dimensional La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) microfibers were fabricated by a simple and cost-effective electrospinning method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL) and low voltage cathodoluminescence (CL) as well as kinetic decay were used to characterize the resulting samples. SEM and TEM results indicated that the diameter of the microfibers annealed at 1000 °C for 3 h was 200-245 nm. The microfibers were further composed of fine and closely linked nanoparticles. La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) phosphors showed the characteristic emission of Ce(3+) (5d → 4f), Eu(3+) ((5)D(0)→(7)F(J)) and Tb(3+) ((5)D(3,4)→(7)F(J)) under ultraviolet excitation and low-voltage electron beams (3-5 kV) excitation. An energy transfer from Ce(3+) to Tb(3+) was observed in the La(9.33)(SiO(4))(6)O(2): Ce(3+), Tb(3+) phosphor under ultraviolet excitation and low-voltage electron beam excitation. Luminescence mechanisms were proposed to explain the observed phenomena. Blue, red and green emission can be realized in La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) microfibers by changing the doping ions. So the La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) phosphors have potential applications in full-color field emission displays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号