首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用共聚合法制备了能级可控的碱金属K~+掺杂石墨相氮化碳(g-C_3N_4)催化剂,考察了催化剂光催化制取过氧化氢的性能.采用X射线多晶粉末衍射(XRD)、N_2吸附-脱附等温线、场发射扫描电子显微镜(SEM)、紫外-可见吸收光谱(UV-Vis)、光致发光光谱(PL)、X射线光电子能谱(XPS)和电化学阻抗谱(EIS)等手段对催化剂进行了表征.结果表明,K~+掺入g-C_3N_4的晶格间隙,并且对催化剂的比表面积、可见光吸收能力及电子-空穴分离效率产生显著影响;通过控制K~+掺杂量可以调控g-C_3N_4催化剂的能级位置,从而使光催化合成过氧化氢反应从"单渠道"变成"双渠道",显著提高了过氧化氢的平衡浓度.  相似文献   

2.
光催化技术被认为是解决能源和环境问题的最有前途方法之一.较高光催化活性的石墨相氮化碳(g-C_3N_4)及碳掺杂TiO_2(C-TiO_2)的制备及性能一直是环境光催化研究的热点,然而,单一光催化剂存在光生电子空穴易复合及量子效率低等问题.本课题组曾通过简单的水辅助煅烧法成功制备了纳米多孔g-C_3N_4,结果发现,多孔g-C_3N_4光催化活性较体相的明显提高,但光催化效率仍不够理想,原因是光生电子空穴复合较严重.传统的制备C-TiO_2的方法亦存在一些不足,如需要添加碳源或碳组分聚集体.我们采用原位掺杂的方法合成了含有一定氧空位和活性位的纳米碳改性的C-TiO_2,后辅以简单的化学气相沉积法构建了g-C_3N_4表面修饰的g-C_3N_4@C-TiO_2.结果表明,相比纯g-C_3N_4, TiO_2及C-TiO_2,g-C_3N_4@C-TiO_2具有更高的光催化活性;但其原因及碳掺杂态的影响尚不清楚.基于此,本文采用X射线光电子能谱技术(XPS)、透射电子显微镜(TEM)、电化学阻抗谱(EIS)、光致发光谱(PL)、电子顺磁共振技术(EPR)及理论计算等手段研究了g-C_3N_4@C-TiO_2光催化活性提高的原因和机理.XPS结果表明,随着碳含量的增加,间隙掺杂产生的O-C键的峰值强度先增大后趋于稳定,而晶格取代掺杂产生的Ti-C键的峰值强度逐渐增大.Ti-O峰的减少进一步证明了更多的碳取代了氧晶格的位置.随着碳掺杂量的增加,C-TiO_2的带隙逐渐减小,因而吸收边红移;同时, g-C_3N_4@C-TiO_2的光催化降解效率先升高后降低. g-C_3N_4@C-TiO_2对RhB(苯酚)光降解的最大表观速率常数为0.036(0.039)min-1,分别是纯TiO_2, 10C-TiO_2, g-C_3N_4和g-C_3N_4@TiO_2的150(139), 6.4(6.8), 2.3(3)和1.7(2.1)倍.g-C_3N_4通过π-共轭和氢键与C-TiO_2表面紧密结合,在催化剂中引入了新的非局域杂质能级和表面态,可以更有效地分离和转移光生电子,因而光催化活性增加.由此可见,碳掺杂状态和g-C_3N_4原位沉积表面改性对g-C_3N_4@C-TiO_2复合光催化剂性能的影响很大.  相似文献   

3.
近年发展起来的低能耗、高效率的光催化技术为解决环境污染和能源短缺等问题提供了新途径.在众多光催化材料中,非金属石墨相氮化碳(g-C_3N_4)半导体材料因其化学稳定性和热稳定性优异、能带结构易调控、前驱体价格低廉等特点备受关注.然而,g-C_3N_4的光生电子-空穴对极易复合,比表面积较小,不能充分利用太阳光等,因而其光催化活性较低.目前,为了提高g-C_3N_4光催化性能,多采用金属或非金属元素掺杂、与其他物质形成异质结、与其他半导体材料进行共聚合等方式.其中,共聚合有利于调节g-C_3N_4内部电子结构,促进g-C_3N_4光生载流子的分离与迁移,而且具有高度离域π-π*共轭结构的导电聚合物更适合与g-C_3N_4进行共聚合,从而进一步提高g-C_3N_4的光催化性能.本文采用原位聚合法制备合成了导电聚吡咯(PPy)与g-C_3N_4的复合材料,并以10 mg L.1亚甲基蓝(MB)作为目标污染物评价其可见光催化性能.经X射线衍射、扫描电镜、透射电镜、比表面积、紫外-可见光谱等一系列表征分析可知,PPy/g-C_3N_4复合物(002)晶面衍射峰强度较g-C_3N_4减弱,表明PPy抑制了g-C_3N_4晶型生长,但未影响其晶型结构.不规则薄片状g-C_3N_4表面均匀地负载有非晶态PPy颗粒,复合物微观形貌发生变化.PPy与g-C_3N_4共轭芳香环层间堆积形成的介孔、大孔孔径和孔容积均增加,比表面积增大了7 m2 g.1,使目标污染物能与光催化剂表面活性物质充分接触反应.同时,PPy具有较强吸光系数,对可见光能完全吸收;PPy/g-C_3N_4复合物的可见光吸收边带发生红移,呈现出较g-C_3N_4更强的可见光吸收能力,提高对可见光的利用效率.光催化降解MB实验结果表明,在可见光(12 W LED灯)照射2 h后,含有0.75 wt%PPy的复合样品0.75PPy/g-C_3N_4表现出最佳光催化活性,MB降解效率为99%;且污染物光催化降解过程符合准一级动力学,反应速率常数(0.03773 min~(-1))约为同条件下g-C_3N_4(0.01284 min~(-1))的3倍.自由基捕获测试实验表明,g-C_3N_4和0.75PPy/g-C_3N_4均产生了·O~2~-自由基,但后者的·O2~-信号更强.这是因为PPy也可吸收可见光并激发出电子,该电子转移到g-C_3N_4导带,再与其本身的电子共同与O2反应生成·O_2-.然而只有0.75PPy/g-C_3N_4在光催化过程中产生了·OH自由基,是由于g-C_3N_4的价带(+1.4 eV)较H_2O/·OH(+2.38 eV vs.NHE)和OH~-/·OH(+1.99 eV vs.NHE)小,此价带上的h~+不能与H_2O和OH~-反应生成·OH,而是由生成的·O_2~-再与e~-和H~+反应产生,即·O_2~-+2H+2e~-CB→·OH+OH~-.本文最后分析了以·O_2~-和·OH作为主要活性物质的PPy/g-C_3N_4复合物光催化降解污染物的反应机理,PPy具有强导电性,可作为光生电子和空穴的传输通道,抑制其在g-C_3N_4表面的复合.  相似文献   

4.
采用研磨-煅烧技术制备不同g-C_3N_4含量的g-C_3N_4/TiO_2复合粉末催化剂,以模拟太阳光光催化降解气相间二甲苯实验评价催化剂活性.结果表明:当g-C_3N_4含量为60%时,g-C_3N_4/TiO_2-60的降解效果最佳.以此为代表,采用溶胶-凝胶-浸渍-提拉方法 ,制备光纤负载g-C_3N_4/TiO_2薄膜光催化材料,应用于气相间二甲苯的降解.通过X射线粉末衍射(XRD)、紫外可见漫反射(UV-Vis/DRS)及高分辨透射电镜(TEM)对催化剂进行表征.采用光电化学实验、自由基捕获实验探究其光催化机理.结果表明:模拟太阳光光照120min后,光纤负载g-C_3N_4/TiO_2-60薄膜光催化材料对气相间二甲苯的降解率为94%,经过3次循环使用后降解活性无明显变化.光在光纤中的有效传播、光生电子和空穴的快速产生、迁移以及反应体系中形成的·O2-,·OH和hVB+3种活性物种是光纤负载薄膜催化剂实现高效降解气相间二甲苯的原因.  相似文献   

5.
采用湿化学方法制备了K/Cl掺杂石墨相氮化碳(g-C_(3)N_(4))纳米材料.以三聚氰胺、KCl作为前驱体,经过溶解、沉淀和焙烧过程,使K/Cl元素在g-C_(3)N_(4)结构上均匀分布.K/Cl掺杂的引入并不影响g-C_(3)N_(4)物相的形成,而是使样品的比表面积增加至18.36 m^(2)·g^(-1),是纯g-C_(3)N_(4)的1.7倍.利用光催化降解气态污染物来表征材料的光催化性能,结果表明,全光谱光照下CN-K/Cl-0.07的性能是纯g-C_(3)N_(4)的2.0倍.光催化性能的提升归因于K/Cl双原子掺杂,不但提升了材料的光吸收能力,而且有利于光生电子-空穴的分离.4次循环试验后,CN-K/Cl-0.07光催化降解异丙醇的性能没有明显降低,证明其具有良好的稳定性.K/Cl掺杂g-C_(3)N_(4)光催化活性高且使用性能好,将会在气体污染物降解领域产生广泛的应用.  相似文献   

6.
近年来,利用太阳光光解水制氢被认为是解决当前能源短缺和环境污染问题的重要途径之一.众所周知,助催化剂可以有效的降低光催化产氢反应的活化能,提供产氢反应的活性位点,有效的促进催化剂中光生载流子的传输与分离,从而提高光催化剂产氢体系的反应活性和稳定性.然而,鉴于贵金属助催化剂(Pt, Au和Pd等)储量低、成本高,极大地制约了其应用.因而,开发出适用于光催化水分解制氢的非贵金属助催化剂尤为重要.石墨相氮化碳(g-C_3N_4)因其具有热稳定性、化学稳定性高以及制备成本低廉等优点,成为光催化领域研究的热点.然而,由于g-C_3N_4的禁带宽度(Eg=2.7 eV)较宽,致使其对可见光的响应能力较弱,并且在光催化反应过程中其光生电子-空穴对易复合,从而导致其光催化产氢活性较低.因此,如何开发出含非贵金属助催化剂的g-C_3N_4高效、稳定的太阳光催化分解水制氢体系引起了人们极大的关注.本文通过水热法-高温氨化法首次将非贵金属Ni_3N作为助催化剂来修饰g-C_3N_4,增强其可见光光催化性能(l420 nm).采用XRD、SEM、EDS、Mapping、UV-Vis、XPS和TEM等手段对Ni_3N/g-C_3N_4光催化体系进行了表征.结果表明, Ni_3N纳米颗粒成功的负载到g-C_3N_4表面且没有改变g-C_3N_4的层状结构.此外,采用荧光光谱分析(PL)、阻抗测试(EIS)和光电流谱进行表征,结果显示, Ni_3N纳米颗粒可有效促进催化剂中光生载流子的传输与分离,抑制电子-空穴对的复合.同时,将功率为300 W且装有紫外滤光片(λ420 nm)的氙灯作为可见光光源进行光催化产氢实验结果表明,引入了一定量的Ni_3N可以极大提高g-C_3N_4的光催化活性,其中, Ni_3N/g-C_3N_4#3的产氢量为~305.4μmol·h-1·g-1,大约是单体g-C_3N_4的3倍.此外,在450nm单色光照射下, Ni_3N/g-C_3N_4光催化产氢体系的量子效率能达到~0.45%,表明Ni_3N/g-C_3N_4具有将入射电子转化为氢气的能力.循环产氢实验表明, Ni_3N/g-C_3N_4在光催化产氢过程中有着较好的产氢活性和稳定性.最后,阐述了Ni_3N/g-C_3N_4体系的光催化产氢反应机理.本文采用的原料价格低廉,性能优异,制备简单,所制材料在光催化制氢领域展现出重要前景.  相似文献   

7.
采用一步煅烧法使类石墨烯碳氮化合物(g-C_3N_4)和磷化镍(Ni_2P)复合并对其光催化产氢性能进行研究.利用X射线粉末衍射、透射电镜、X射线光电子能谱、紫外可见光谱对该复合催化剂的组成、形貌等进行了表征.研究了不同含量的Ni_2P以及不同牺牲剂对g-C_3N_4/Ni_2P光催化性能的影响.与单独的g-C_3N_4相比,该复合催化剂的光催化产氢速率提高了13倍,可以达到165μmol g~(-1)·h~(-1).利用光电化学和光致发光光谱等技术对该复合光催化剂的光催化产氢机理进行研究,结果表明Ni_2P在高效分离光生载流子方面起了关键作用,并且g-C_3N_4和Ni_2P的复合产生了协同效应加速了电子-空穴对的分离,提高了光催化产氢性能.  相似文献   

8.
本文通过将Cu~(2+)掺入g-C_3N_4结构中成功制备了Cu/g-C_3N_4光催化剂,并进一步优化其光催化性能。同时,采用多种表征方法对Cu/g-C_3N_4光催化剂的结构、形貌、光学和光电性能进行了分析。X射线衍射(XRD)和X射线光电子能谱(XPS)结果表明制备的光催化剂为Cu/g-C_3N_4,且Cu的价态为+2。在可见光照射下,研究了不同铜含量的Cu/g-C_3N_4和gC_3N_4光催化剂的光催化活性。实验结果表明,Cu/g-C_3N_4光催化剂的降解能力显著高于纯相的g-C_3N_4。N_2吸附-解吸等温线表明,Cu~(2+)的引入对g-C_3N_4的微观结构影响不大,说明光催化活性的提高可能与光生载流子的有效分离有关。因此,Cu/g-C_3N_4光催化降解RhB和CIP性能的提升可能是由于Cu~(2+)可以作为电子捕获陷阱从而降低了载流子的复合速率。通过光电测试表明,在g-C_3N_4中掺入Cu~(2+)可以降低g-C_3N_4的电子空穴复合速率,加速电子空穴对的分离,从而提高了其光催化活性。自由基捕获实验和电子自旋共振(ESR)结果表明,超氧自由基(O_2~(·-))、羟基自由基(·OH)和空穴的协同作用提高了Cu/g-C_3N_4光催化剂的光催化活性。  相似文献   

9.
g-C_3N_4是一种新型的稳定的半导体光催化材料,它可以通过热缩聚法、固相反应法、电化学沉积法和溶剂热法等制备.g-C_3N_4禁带宽度约为2.7 eV,吸收边在460 nm左右,具有合适的导带位置,可用作可见光响应制氢的光催化材料,但在实际应用中g-C_3N_4光催化性能较低,其原因可归纳为:(1)g-C_3N_4在吸收光子产生电子和空穴对后,光生载流子的传输速率较慢,容易在体相或表面复合,致使g-C_3N_4的量子效率较低;(2)材料在合成过程中易于结块,使g-C_3N_4的比表面积远小于理论值,严重削弱了g-C_3N_4光催化材料的制氢性能.目前已有很多关于g-C_3N_4改性的报道,但一些方法对材料的处理过程耗时较长或者合成过程较难控制.用助剂改性是提高光催化制氢活性的半导体材料的主要策略之一.合适的助剂可改进电荷分离和加速表面催化反应,从而提高光催化剂的制氢活性.虽然稀有金属或贵金属,如铂、金和银可大大提高g-C_3N_4的制氢速率,但由于其昂贵和稀缺性,因而应用严重受限.因此,开发成本低、储量丰富、高性能助剂来进一步提高制氢性能具有重要意义.NiS_2来源丰富、价格低廉.它可在酸性和碱性的环境保持相对较高的稳定性,且其表面电子结构表现出类金属特性.但它较难与半导体光催化剂形成强耦合和界面,通常需要水热等条件下合成.实验表明,g-C_3N_4表面存在着大量的含氧官能团及未缩合的氨基基团,为表面接枝提供了丰富的反应活性位点,因而可利用g-C_3N_4表面均匀分布的含氧官能团等和Ni~(2+)结合,再原位与S~(2-)反应,从而在g-C_3N_4上负载耦合紧密的NiS_2助剂,进一步提高复合材料的光催化制氢活性.本文采用低温浸渍法制备了NiS_2/g-C_3N_4光催化剂.NiS_2助剂在温和的反应条件下与g-C_3N_4光催化剂复合,可以防止催化剂结构的破坏,同时使得助剂均匀地分散,并紧密结合在催化剂表面,从而大大提高光催化剂的制氢性能.该样品制备过程为:(1)通过水热处理制备含氧官能团和较大比表面积的g-C_3N_4;(2)添加Ni(NO_3)_2前驱体后,Ni~(2+)离子由于静电作用紧密吸附在g-C_3N_4表面;(3)在80℃加入硫代乙酰胺(TAA),可在g-C_3N_4的表面紧密和均匀形成助剂NiS_2.表征结果证实成功制备NiS_2纳米粒子修饰的g-C_3N_4光催化剂.当Ni含量为3 wt%,样品表现出最大的制氢速率(116μmol h~(-1)g~(-1)),明显高于纯g-C_3N_4.此外,对NiS_2/g-C_3N_4(3 wt%)的样品进行光催化性能的循环测试结果表明:该样品在可见光照射下可以保持一个稳定的、有效的光催化制氢性能.根据实验结果,我们提出一个可能的光催化机理:即NiS_2促进了物质表面快速转移光生电子,使g-C_3N_4光生电荷有效分离.基于NiS_2具有成本低和效率高的优点,因而有望广泛应用于制备高性能的光催化材料.  相似文献   

10.
以尿素为原料,引入少量的多壁碳纳米管(CNT)改性,采用简便方法制备CNT/g-C_3N_4催化剂。利用扫描电镜(SEM)、透射电镜(TEM)、傅里叶红外光谱仪(FT-IR)、X射线衍射(XRD)、X射线光电子能谱(XPS)、紫外-可见-近红外分光光度计(UV-Vis-NIR Spectrophotometer)、荧光光谱(PL)等手段对CNT/g-C_3N_4催化剂进行表征。结果表明,g-C_3N_4与CNT之间的协同作用,影响了gC_3N_4的能带结构,增强了其对可见光的吸收,改善了光生载流子的分布,提高了电子-空穴对的分离效率。并以罗丹明B(RhB)水溶液模拟废水,在可见光下考察催化剂的光催化降解性能,发现当CNT掺杂量为0.1%(w/w)时效果最佳,降解速率常数是体相g-C_3N_4的3.1倍,且研究发现超氧自由基是该体系下的主要活性物种。  相似文献   

11.
自从Fujishima和Honda利用TiO_2光阳极和Pt电极成功实现太阳能光电化学分解水之后,光催化被认为是解决环境污染和能源短缺两大问题最有前景的方法之一,因为该技术可以有效的利用太阳能这种地球上最丰富的能源来驱动多种不同的催化反应实现能源生产和环境净化,比如:水分解、CO_2还原、有机污染物降解和有机合成等。除了金属氧化物、金属硫化物和金属氮氧化物等多类金属化合物半导体光催化剂,近几年,石墨相氮化碳(g-C_3N_4)因其原料来源广泛、无毒、稳定以及相对较窄的带隙(2.7 eV)而具备可见光响应等特点,在光催化领域获得了广泛的重视。然而,gC_3N_4对太阳光谱中可见光的吸收效率较低且光生电子和空穴复合严重,导致其光催化活性处于较低水平。至今,研究人员已经开发出多种提高g-C_3N_4光催化活性的方法,如元素掺杂、微纳结构和异质结构设计和助催化剂修饰等。元素掺杂被证明是调节g-C_3N_4独特电子结构和分子结构的有效方法,可以大幅扩展其光响应范围,并促进光生电荷分离。特别地是,非金属元素掺杂以提高g-C_3N_4的光催化活性已经得到很好的研究。通常用于掺杂g-C_3N_4的非金属元素是氧(O)、磷(P)、硫(S)、硼(B)、卤素(F、Cl、Br、I)和其他非金属元素(如碳(C)和氮(N)自掺杂),因为这些非金属元素有着易于获取的原材料并可以较为简单的引入g-C_3N_4骨架结构中。在这篇综述文章中,作者首先介绍了g-C_3N_4的结构和光学性质,接着简要介绍了光催化剂的g-C_3N_4的改性;然后详细回顾了非金属掺杂改善g-C_3N_4光催化活性的进展,同时总结了光催化机理以期更好地理解光催化的本质并指导新型g-C_3N_4光催化剂的开发。最后,对g-C_3N_4光催化剂的后续研究进行了展望。  相似文献   

12.
江静  曹少文  胡成龙  陈春华 《催化学报》2017,(12):1981-1989
利用半导体光催化技术将太阳能转化为清洁化学能源是解决能源危机和环境问题的最有潜力的途径之一.过去几十年,许多半导体包括氧化物、硫化物和氮化物均表现出光催化活性.然而,半导体光催化的实际应用仍然受制于其较低的太阳能转化效率.解决上述问题的方法之一是发展高效的可见光光催化制氢材料.近年来,石墨相氮化碳(g-C_3N_4)作为一种聚合物半导体材料,受到了光催化研究人员的广泛关注.g-C_3N_4具有可见光吸收能力、合适的导带价带位置、良好的热稳定性和化学稳定性,且制备方法简单和结构易调控,是一种极具潜力的光催化制氢材料.然而g-C_3N_4仍然仅能吸收波长450 nm以下的光,且其光生电子和空穴极易复合,因而光催化制氢效率较低.目前,研究人员采用了多种改性方法来增强g-C_3N_4的光催化性能,其中通过元素掺杂进行能带结构调控是一种非常有效的策略.而碱金属原子(Li,Na和K)被认为可有效进入g-C_3N_4的内部结构,通过引入缺陷来拓宽g-C_3N_4的光吸收范围和提高光生电荷的分离效率.不过到目前为止,尚未见系统的比较研究来深入理解不同碱金属元素掺杂的g-C_3N_4在可见光光催化制氢中的性能差异.本文采用X射线衍射(XRD)、氮气吸附-脱附测试、紫外可见漫反射光谱(UV-visDRS)、时间分辨荧光光谱(TRPL)、X射线光电子能谱(XPS)、光电化学测试和光催化制氢测试等表征和测试手段比较研究了不同碱金属元素掺杂的g-C_3N_4在结构、光学性质、能带结构、电荷转移能力和光催化性能等方面的差异.XRD结果表明,碱金属掺杂可导致g-C_3N_4的层间距离增大,且碱金属原子半径越大,g-C_3N_4的层间距离越大.氮气吸附-脱附测试结果表明,碱金属掺杂可提高g-C_3N_4的比表面积,其中Na掺杂的最高.UV-vis DRS和XPS谱结果表明,依Li,Na,K的顺序,碱金属掺杂导致g-C_3N_4带隙逐渐变窄,使得可见光吸收能力逐渐增强,且其导带和价带位置逐渐下移.TRPL和光电化学测试结果显示,碱金属掺杂有效抑制了g-C_3N_4的光生载流子复合和促进了光生载流子的转移,其中Na掺杂的g-C_3N_4的光生载流子利用效率最高.可见光光催化制氢实验表明,碱金属掺杂显著提升了g-C_3N_4的光催化性能,其中以Na掺杂的g-C_3N_4性能最佳,其产氢速率(18.7mmol h–1)较纯的g-C_3N_4(5.0mmol h–1)可提高至3.7倍.由此可见,g-C_3N_4的掺杂改性是一个对其微结构和能带结构的优化调控过程,最终获得最优的光催化性能.  相似文献   

13.
光催化技术是目前解决能源和环境问题最具前景的手段之一,因此寻找高效光催化剂已成为光催化技术的研究热点.而在众多半导体催化剂中,廉价、环保且性能稳定的g-C_3N_4光催化剂在太阳光开发利用方面尤其引人关注.然而,由于g-C_3N_4的比表面小,活性位点少,以及光生电子/空穴对易复合等不足,严重导致其较低的光催化量子效率.因此,构造Z型体系和负载助催化剂等策略被广泛应用于提高g-C_3N_4光催化效率.在过去几年中,TiO_2,Bi_2WO_6,WO_3,Bi_2MoO_6,Ag_3PO_4和ZnO已经被成功证实可以与g-C_3N_4耦合而构造Z型光催化剂体系.其中,WO_3/g-C_3N_4光催化剂体系,具有可见光活性的WO_3导带中的光生电子和g-C_3N_4价带中的光生空穴容易实现Z型复合,从而保留了WO_3的强氧化能力和g-C_3N_4的高还原能力,最终大幅度提高了整个体系的光催化活性.在g-C_3N_4的各种产氢助催化剂中,由于常用的Pt,Ag和Au等贵金属的高成本和低储量等问题严重限制了它们的实际应用,所以近年来各种非贵金属助催化剂(包括纳米碳,Ni,NiS,Ni(OH)_2,WS_2和MoS_2等)得到了广泛的关注.我们采取廉价且丰富的Ni(OH)_x助催化剂修饰g-C_3N_4/WO_3耦合形成的Z型体系,开发出廉价高效的WO_3/g-C_3N_4/Ni(OH)_x三元产氢光催化体系.在该三元体系中,Ni(OH)_x和W0_3分别用于促进g-C_3N_4导带上光生电子和价带的光生空穴的分离及利用,从而使得高能的g-C_3N_4的光生电子在Ni(OH)_x富集并应用于光催化产氢,而高能的WO_3的光生空穴被应用于氧化牺牲剂三乙醇胺,最终实现了整个体系的高效光催化产氢活性及稳定性.我们通过直接焙烧钨酸铵和硫脲制备出WO_3纳米棒/g-C_3N_4,并采用原位光沉积方法将Ni(OH)_x纳米颗粒负载到WO_3/g-C_3N_4上.随后,我们采取X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱分析(XPS)和比表面和孔径分布等表征手段来研究光催化剂的结构与形貌;采取紫外-可见漫反射表征方法来研究其光学性能;采取荧光光谱,阻抗和瞬态光电流曲线等表征手段来测试光催化剂的电荷分离性能;采取极化曲线和电子自旋共振谱等表征手段来证明光催化机理;采取光催化分解水产氢的性能测试来研究光催化剂的光催化活性与稳定性.XRD,HRTEM和XPS表征结果,表明WO_3为有缺陷的正交晶系的晶体,直径为20-40纳米棒且均匀嵌入在g-C_3N_4纳米片上;Ni(OH)_x为Ni(OH)_2与Ni的混合物,其Ni(OH)_2与Ni的摩尔比为97.4:2.6,Ni(OH)_x粒径为20-50 nm且均匀分散在g-C_3N_4纳米片上,WO_3/g-C_3N_4/Ni(OH)_x催化剂界面之间结合牢固,其中WO_3和Ni(OH)_x均匀分布在g-C_3N_4上.紫外-可见漫反射表征结果表明,随着缺陷WO_3的负载量增加,复合体系的吸收边与g-C_3N_4相比产生明显的红移,而加入Ni(OH)_x助催化剂使得催化剂体系的颜色由黄变黑,明显地增加了可见光的吸收.荧光光谱,阻抗和瞬态光电流曲线结果表明,WO_3和Ni(OH)_x的加入能有效地促进光生电子/空穴的分离.极化曲线结果表明,掺入WO_3和Ni(OH)_x能降低g-C_3N_4的析氢过电位,从而提高光催化剂表面的产氢动力学.·O_2~-和·OH电子自旋共振谱表明成功形成了WO_3/g-C_3N_4耦合Z型体系.光催化分解水产氢的性能测试表明,20%WO_3/g-C_3N_4/4.8%Ni(OH)_x产氢效率最高(576μmol/(g·h)),分别是g-C_3N_4/4.8%Ni(OH)_x,20%WO_3/g-C_3N_4和纯g-C_3N_4的5.7,10.8和230倍.上述结果充分证明,Ni(OH)_x助催化剂修饰和g-C_3N_4/WO_3 Z型异质结产生了极好的协同效应,最终实现了三元体系的极高的光催化产氢活性.  相似文献   

14.
光催化产氢可以直接将太阳能转化为化学能,是非常有前景的产氢技术之一.然而,光催化产氢的瓶颈在于如何提高光催化产氢效率和光催化剂的稳定性,以及降低产氢成本.因此,开发廉价、易于制备的产氢光催化剂引起人们广泛关注.作为一种非金属半导体光催化剂,石墨相氮化碳(g-C_3N_4)具有良好的物理化学性质,如良好的化学和热稳定性、极佳的光电性能、强的抗氧化能力等.更为重要的是,g-C_3N_4具有合适的能带结构,能够利用可见光.因此,g-C_3N_4已广泛应用于光催化降解、空气净化、光解水和光催化CO2还原等领域.然而,体相g-C_3N_4仍然暴露出一些缺点,例如比表面积小、光生电子-空穴对的复合率高和反应动力学差等.将体相g-C_3N_4剥离成g-C_3N_4纳米薄片是提高光催化效率的有效方法.薄层g-C_3N_4纳米片具有较高的比表面积,比体相的g-C_3N_4有更好的光生电子-空穴对分离效率.为了进一步提高g-C_3N_4的光催化性能,本文通过在薄层g-C_3N_4表面均匀分散Au纳米颗粒来控制电荷载流子的流动.并通过光催化产氢和污染物降解来评估金/薄层氮化碳(Au/monolayer g-C_3N_4)复合材料的光催化性能.所有的Au/薄层g-C_3N_4复合材料均显示出优于体相g-C_3N_4的光催化性能,其中1%Au/薄层g-C_3N_4复合光催化剂具有最高的产氢速率(565μmol g.1h.1),且具有最佳的污染物降解能力.这主要归结于热电子的注入,而不是肖特基结.Au纳米颗粒的成功引入带来了表面等离子共振(SPR)效应,SPR效应不仅能够提高光吸收效率,而且能够带来高效的热电子转移途径.热电子是从Au纳米颗粒表面注入到薄层g-C_3N_4纳米片的导带上.因此,Au/薄层g-C_3N_4复合光催化剂具有更高的光生电子-空穴对迁移和分离效率,以及更低的光生电子-空穴对复合几率.采用紫外可见光谱(UV-Vis)、光致发光光谱(PL)、光电流和阻抗等表征手段研究了Au/薄层g-C_3N_4复合光催化剂性能提升的原因.结果表明,相比于薄层g-C_3N_4纳米片,Au/薄层g-C_3N_4复合光催化剂具有更好的光电性能,因而光催化活性更高.此外,与薄层g-C_3N_4纳米片的光电流强度相比,Au/薄层g-C_3N_4复合光催化剂的光电流强度没有发生改变,这表明薄层g-C_3N_4纳米片导带上的光生电子不可能转移到Au纳米颗粒的表面.也就是说,肖特基结并没有参与到电子转移过程中,因此推测出整个光催化反应是热电子注入在起作用  相似文献   

15.
通过溶胶-凝胶法制备出不同Ni掺杂比例的双钙钛矿Sr_2Ni_xCo_(2-x)O_6(x=0.2,0.4,0.6,0.8),通过热分解法制备出具有层状结构的纳米颗粒g-C_3N_4,并制备其复合物催化剂。将双钙钛矿和g-C_3N_4分别制备成双功能电极片,用于测试其对氧还原(ORR)和氧析出(OER)的催化活性,然后选取具有最佳氧催化活性的Ni掺杂比例x=0.4的双钙钛矿与一定重量比例的g-C_3N_4进行复合,测试复合催化剂的氧催化活性。结果表明,复合后的催化剂催化效果明显优于单一催化剂,当g-C_3N_4添加量占双钙钛矿的30%(w/w)时复合催化剂催化氧还原反应的最大电流密度为395.7 mA·cm~(-2)(-0.6 V vs Hg/HgO),氧析出反应的最大电流密度为372.0mA·cm~(-2)(1 V vs Hg/HgO),这表明g-C_3N_4与Sr_2Ni_(0.4)Co_(1.6)O_6复合后协同催化能够提高双钙钛矿的氧催化活性。  相似文献   

16.
本研究工作使用尿素作为前驱体,通过两步煅烧法得到具有较高比表面积(97 m~2·g~(-1))的g-C_3N_4纳米片。然后,通过简单的水热法将Fe Ni层状双氢氧化物(Fe Ni-LDH)助催化剂负载到g-C_3N_4纳米片上,从而获得基于g-C_3N_4的二维/二维复合光催化剂。实验表明,在二维/二维Fe Ni-LDH/g-C_3N_4复合材料上,光催化还原二氧化碳生成甲醇的产率要远高于在纯g-C_3N_4上获得甲醇的产率。一系列表征结果证明,Fe Ni-LDH/g-C_3N_4复合光催化剂的光吸收得到了增强,同时Fe NiLDH/g-C_3N_4复合光催化剂对二氧化碳的吸附能力也得到了提高。更重要的是,Fe Ni-LDH的引入有效地抑制了光生电子和空穴的复合,进一步提高了g-C_3N_4的光催化二氧化碳还原活性。此外,通过改变用于光催化性能测试的Fe Ni-LDH的负载量,发现Fe Ni-LDH的最佳负载量为4%(质量分数),对应的甲醇生产率为1.64μmol·h~(-1)·g~(-1),是纯的g-C_3N_4的6倍。这项研究提供了一种有效的策略,即通过负载层状铁镍双金属氢氧化物作为助催化剂来提高g-C_3N_4的光催化二氧化碳还原活性。  相似文献   

17.
利用水热法以葡萄糖和氮化碳(g-C_3N_4)为原料,成功地制备了炭球修饰氮化碳(C/g-C_3N_4)复合型光催化剂。通过X射线粉末衍射、扫描电镜、N_2吸附-脱附、紫外可见漫反射、表面光电压和电子顺磁共振分别对样品的结构、组成、形貌、比表面积和光学性能进行了表征。结果显示:直径约20 nm的炭球紧密地排列于g-C_3N_4表层,当葡萄糖与g-C_3N_4用量比(质量分数)为1%时,复合催化剂1%C/g-C_3N_4的光催化性能最好。C/g-C_3N_4与单一g-C_3N_4相比,不仅比表面积明显增大,还扩展了可见光的响应范围,且提高了催化剂光生电子与空穴的分离效率。在400 W金卤灯照射下,光线通过420 nm滤光片后,在80 min内1%C/g-C_3N_4对10μmol·L~(-1)的罗丹明B降解率高达87%,是纯g-C_3N_4在同样条件下催化性能的3倍,且稳定性良好。  相似文献   

18.
光催化分解水制氢是应对能源危机和环境污染问题的途径之一,也是实现太阳能转化和储存的有效方法.其中,应用层面的一个关键制约因素是高效光催化剂的开发和制氢反应体系的构建,理论层面的一个关键科学问题是光生电子-空穴的高效分离及光生电子定向迁移,这两个层面的问题构成当前光催化分解水制氢研究的重大挑战.因此,稳定、高效催化剂的制备成为光催化领域重要的研究目标.类石墨烯氮化碳(g-C_3N_4)的结构与石墨相似,其层与层之间的范德华力使其具有良好的热稳定性和化学稳定性.g-C_3N_4是一种聚合物非金属半导体,由于具有与碳材料相似的层状堆积结构和sp~2杂化的π共轭电子能带结构,因此被认为是最有可能代替碳材料用于光催化分解水制氢的新型光催化材料.g-C_3N_4的室温禁带宽度为2.7eV左右,其价带和导带的位置完全覆盖了水的氧化-还原电位,因此理论上g-C_3N_4不仅能够氧化水为氧气,而且能够将水还原产氢,从而表现出优良的光电特性,成为新型太阳能转换材料.然而, g-C_3N_4在展示了良好研究前景的同时也存在一些缺陷,如比表面积较小及稳定性差等,这制约了g-C_3N_4在光催化领域的应用.为此,通过各种化学修饰对g-C_3N_4进行改性以提高其光催化活性和稳定性成为一个重要的研究方向.本文采用高温煅烧方法成功制备了Zn-Ni-P@g-C_3N_4催化剂.将一定量的g-C_3N_4、乙酸镍、乙酸锌和次亚磷酸钠均匀混合在一起并研磨成粉末,然后以3 oC/min的速率升温至300oC并在此温度下保持2h,自然冷却至室温后即得到Zn-Ni-P@g-C_3N_4催化剂,整个制备过程在氮气环境中进行.研究表明,在Zn与Ni摩尔比为1:3的Zn-Ni-P@g-C_3N_4催化剂上,当反应体系pH=10,在420nm光照下反应5h产氢量可达531.2μmol,是纯g-C_3N_4上的54.7倍.20h循环实验表明催化剂具有较好的光催化稳定性.对催化剂进行了XRD、TEM、SEM、XPS、N_2吸附、UV-vis DRS、瞬态光电流、FT-IR、瞬态荧光和Mott-Schottk等一系列表征,证明Zn-Ni-P的参与有效调变了电荷传输机制.SEM表征表明, Zn-Ni-P@g-C_3N_4为均匀排列的小颗粒,与纯g-C_3N_4相比其结构发生了改变,在Zn-Ni-P@g-C_3N_4结构中未发现g-C_3N_4纳米片的存在,说明Zn-Ni-P和g-C_3N_4成功复合.在上述研究基础上推测了可能的反应机理.  相似文献   

19.
以三聚氰胺为前驱体,以硝酸铁和硝酸钴为原料,采用热解法制备双金属掺杂石墨相氮化碳(g-C_3N_4),对其进行傅立叶红外衍射光谱(FT-IR),X射线衍射光谱(XRD),氮气吸附-脱附图谱和电子扫描显微镜(SEM)等表征。结果显示,掺杂双金属并没有改变g-C_3N_4的晶体结构,且增加了g-C_3N_4的比表面积。在可见光下以罗丹明B为模型污染物,研究了双金属不同掺杂比例的g-C_3N_4的光催化降解性能。结果表明,当m(Fe(NO_3)_3∶m(Co(NO_3)_2)=8∶1,总质量为0. 01g时,120 min对罗丹明B的降解率达到89. 2%,是纯氮化碳的2倍。由反应动力学可得,其反应速率常数也达到纯g-C_3N_4的7倍。重复实验观察到催化剂具有较高的稳定性。  相似文献   

20.
以硝酸铈和三聚氰胺为原料,采用热解法合成系列Ce掺杂石墨相氮化碳(g-C_3N_4).采用X射线衍射仪(XRD)、透射电子显微镜(TEM)、傅里叶变换红外光谱仪(FTIR)、紫外-可见漫反射光谱仪(UV-Vis DRS)、荧光光谱仪(PL)和X射线光电子能谱仪(XPS)等对样品进行了表征.结果表明,Ce掺杂使g-C_3N_4晶粒尺寸减小,比表面积增大,光生电子/空穴对复合几率降低,并影响到能带结构.在可见光下光催化降解亚甲基蓝水溶液的结果表明,Ce掺杂g-C_3N_4的可见光光催化活性远优于纯g-C_3N_4.其中,0.10-Ce-C_3N_4样品80 min内对亚甲基蓝的降解率高达98.51%,速率常数达0.0506 min~(-1),是纯g-C_3N_4的4.9倍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号