首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Three porphyrin-fullerene dyads, in which a diyne bridge links C(60) with a beta-position on a tetraarylporphyrin, have been synthesized. The free-base dyad was prepared, as well as the corresponding Zn(II) and Ni(II) materials. These represent the first examples of a new class of conjugatively linked electron donor-acceptor systems in which pi-conjugation extends from the porphyrin ring system directly to the fullerene surface. The processes that occur following photoexcitation of these dyads were examined using fluorescence and transient absorption techniques on the femtosecond, picosecond, and nanosecond time scales. In sharp contrast to the photodynamics associated with singlet excited-state decay of reference tetraphenylporphyrins (ZnTPP, NiTPP, and H(2)TPP), the diyne-linked dyads undergo ultrafast (<10 ps) singlet excited-state deactivation in toluene, tetrahydrofuran (THF), and benzonitrile (PhCN). Transient absorption techniques with the ZnP-C(60) dyad clearly show that in toluene intramolecular energy transfer (EnT) to ultimately generate C(60) triplet excited states is the dominant singlet decay mechanism, while intramolecular electron transfer (ET) dominates in THF and PhCN to give the ZnP(*+)/C(60)(*-) charge-separated radical ion pair (CSRP). Electrochemical studies indicate that there is no significant charge transfer in the ground states of these systems. The lifetime of ZnP(*+)/C(60)(*-) in PhCN was approximately 40 ps, determined by two different types of transient absorption measurement in two different laboratories. Thus, in this system, the ratio of the rates for charge separation (k(CS)) to rates for charge recombination (k(CR)), k(CS)/k(CR), is quite small, approximately 7. The fact that charge separation (CS) rates increase with increasing solvent polarity is consistent with this process occurring in the normal region of the Marcus curve, while the slower charge recombination (CR) rates in less polar solvents indicate that the CR process occurs in the Marcus inverted region. While photoinduced ET occurs on a similar time scale in a related dyad 15 in which a diethynyl bridge connects C(60) to the para position of a meso phenyl moiety of a tetrarylporphyrin, CR occurs much more slowly; i.e., k(CS)/k(CR) approximately equal to 7400. Thus, the position at which the conjugative linker is attached to the porphyrin moiety has a dramatic influence on k(CR) but not on k(CS). On the basis of electron density calculations, we tentatively conclude that unfavorable orbital symmetries inhibit charge recombination in 15 vis a vis the beta-linked dyads.  相似文献   

2.
Dioxygen accelerates back electron transfer (BET) processes between a fullerene radical anion (C60) and a radical cation of zinc porphyrin (ZnP) in photolytically generated ZnP.+-C60.- and ZnP.+-H2P-C60.- radical ion pairs. The rate constant of BET increases linearly with increasing oxygen concentration without, however, forming reactive oxygen species, such as singlet oxygen or superoxide anion. When ferrocene (Fc) is used as a terminal electron donor moiety instead of ZnP (i.e., Fc-ZnP-C60), no catalytic effects of dioxygen were, however, observed for the BET in Fc+-ZnP-C60.-, that is, from C60.- to the ferricenium ion. In the case of ZnP-containing C60 systems, the partial coordination of O2 to ZnP.+ facilitates an intermolecular electron transfer (ET) from C60.- to O2. This rate-determining ET step is followed by a rapid intramolecular ET from O2.- to ZnP.+ in the corresponding O2.--ZnP.+ complex and hereby regenerating O2. In summary, O2 acts as a novel catalyst in accelerating the BET of the C60.--ZnP.+ radical ion pairs.  相似文献   

3.
The decay paths on the singlet excited-state surface of 9H-adenine and the associated energy barriers have been calculated at the CAS-PT2//CASSCF level. There are three fundamental paths for the photophysics: two paths for the (1)L(b) state which are virtually barrierless at the present level of theory and correspond to formation of the (n,pi) intermediate and direct decay to the ground state and a third path for ground-state decay of the (n,pi) state with an activation barrier of approximately 0.1 eV. The (1)L(a) state, which has the largest oscillator strength, either decays directly to the ground state or contributes indirectly to the excited-state lifetime by populating the two other states. The results are used to interpret the photophysics in terms of an excited-state plateau for the (1)L(b) state that corresponds to the short-lived excited-state component (approximately 0.1 ps) and a well (i.e., a proper minimum) for the (n,pi) state that gives rise to the long component (1 ps or more). The direct decay to the ground state of the (1)L(b) state is probably the decay channel invoked to explain the experimental wavelength dependence of the relative amplitudes of the two components. In addition to that, the excited-state component in the nanosecond range detected in the time-resolved photoelectron spectrum is proposed to be a triplet (pi,pi) state formed after intersystem crossing from the singlet (n,pi) state.  相似文献   

4.
Photoexcitation of chromophoric dimers constrained to a symmetric pi-stacked geometry by their molecular structure usually produces excimers independent of solvent polarity, while dimers with edge-to-edge perpendicular pi systems undergo excited-state symmetry breaking in highly polar solvents leading to intradimer charge separation. We present direct evidence for symmetry breaking in the lowest excited singlet state of a symmetric cofacial dimer of 1,7-bis(pyrrolidin-1'-yl)-perylene-3,4:9,10-bis(dicarboximide) (5PDI) in the low polarity solvent toluene to produce a radical ion pair quantitatively. This dimer, cof-5PDI2, was synthesized by attaching two 5PDI chromophores via imide groups to a xanthene spacer. For comparison, a linear symmetric dimer, lin-5PDI2, was prepared in which the 5PDI chromophores are linked end-to-end via a N-N single bond between their imides. The edge-to-edge pi systems of the 5PDI chromophores within lin-5PDI2 are perpendicular to one another. Ground-state absorption spectra of both 5PDI dimers show exciton coupling, which is consistent with the orientation of the 5PDI chromophores relative to one another. Ultrafast transient absorption spectroscopy following excitation of the dimers with 700 nm, 100 fs laser pulses shows that quantitative intradimer electron transfer occurs in cof-5PDI2 in toluene with tau = 0.17 ps followed by charge recombination to the ground state with tau = 222 ps. Similar measurements on lin-5PDI2 reveal that photoinduced electron transfer does not occur in toluene, but occurs in more polar solvents such as 2-methyltetrahydrofuran, wherein tau = 55 ps for charge separation and tau = 99 ps for charge recombination. Excited-state symmetry breaking in 5PDI dimers provides new routes to biomimetic charge separation and storage assemblies that can be more easily prepared and modified than those based on multiple tetrapyrrole macrocycles.  相似文献   

5.
6.
An electron‐deficient copper(III) corrole was utilized for the construction of donor–acceptor conjugates with zinc(II) porphyrin (ZnP) as a singlet excited state electron donor, and the occurrence of photoinduced charge separation was demonstrated by using transient pump–probe spectroscopic techniques. In these conjugates, the number of copper corrole units was varied from 1 to 2 or 4 units while maintaining a single ZnP entity to observe the effect of corrole multiplicity in facilitating the charge‐separation process. The conjugates and control compounds were electrochemically and spectroelectrochemically characterized. Computational studies revealed ground state geometries of the compounds and the electron‐deficient nature of the copper(III) corrole. An energy level diagram was established to predict the photochemical events by using optical, emission, electrochemical, and computational data. The occurrence of charge separation from singlet excited zinc porphyrin and charge recombination to yield directly the ground state species were evident from the diagram. Femtosecond transient absorption spectroscopy studies provided spectral evidence of charge separation in the form of the zinc porphyrin radical cation and copper(II) corrole species as products. Rates of charge separation in the conjugates were found to be of the order of 1010 s?1 and increased with increasing multiplicity of copper(III) corrole entities. The present study demonstrates the importance of copper(III) corrole as an electron acceptor in building model photosynthetic systems.  相似文献   

7.
Electron-donating ferrocene units have been attached to SWNTs, with different degrees of functionalization. By means of a complementary series of novel spectroscopic techniques (i.e., steady-state and time-resolved), we have documented that mutual interactions between semiconducting SWNT and the covalently attached electron donor (i.e., ferrocene) lead, in the event of photoexcitation, to the formation of radical ion pairs. In the accordingly formed radical ion pairs, oxidation of ferrocene and reduction of SWNT were confirmed by spectroelectrochemistry. It is, however, shown that only a few semiconducting SWNTs [i.e., (9,4), (8,6), (8,7), and (9,7)] are susceptible to photoinduced electron transfer processes. These results are of relevant importance for the development of SWNT-based photovoltaics.  相似文献   

8.
Spectroscopic, redox, computational, and electron transfer reactions of the covalently linked zinc porphyrin–triphenylamine–fulleropyrrolidine system are investigated in solvents of varying polarity. An appreciable interaction between triphenylamine and the porphyrin π system is revealed by steady‐state absorption and emission, redox, and computational studies. Free‐energy calculations suggest that the light‐induced processes via the singlet‐excited porphyrin are exothermic in benzonitrile, dichlorobenzene, toluene, and benzene. The occurrence of fast and efficient charge‐separation processes (≈1012 s?1) via the singlet‐excited porphyrin is confirmed by femtosecond transient absorption measurements in solvents with dielectric constants ranging from 25.2 (benzonitrile) to 2.2 (benzene). The rates of the charge separation processes are much less solvent‐dependent, which suggests that the charge‐separation processes occur at the top region of the Marcus parabola. The lifetimes of the singlet radical‐ion pair (70–3000 ps at room temperature) decrease substantially in more polar solvents, which suggests that the charge‐recombination process is occurring in the Marcus inverted region. Interestingly, by utilizing the nanosecond transient absorption spectral technique we can obtain clear evidence about the existence of triplet radical‐ion pairs with relatively long lifetimes of 0.71 μs (in benzonitrile) and 2.2 μs (in o‐dichlorobenzene), but not in toluene and benzene due to energetic considerations. From the point of view of mechanistic information, the synthesized zinc porphyrin–triphenylamine–fulleropyrrolidine system has the advantage that both the lifetimes of the singlet and triplet radical‐ion pair can be determined.  相似文献   

9.
The ultrafast ground state recovery (GSR) dynamics of the radical cation of perylene, Pe(*+), generated upon bimolecular photoinduced electron transfer in acetonitrile, has been investigated using pump-pump-probe spectroscopy. With 1,4-dicyanobenzene as electron acceptor, the free ion yield is substantial and the GSR dynamics of Pe(*+) was found to depend on the time delay between the first and second pump pulses, Deltat(12), i.e., on the "age" of the ion. At short Deltat(12), the GSR dynamics is biphasic, and at Deltat(12) larger than about 500 ps, it becomes exponential with a time constant around 3 ps. With trans-1,2-dicyanoethylene as acceptor, the free ion yield is essentially zero and the GSR dynamics of Pe(*+) remains biphasic independently of Deltat(12). The change of dynamics observed with 1,4-dicyanobenzene is ascribed to the transition from paired to free solvated ion, because in the pair, the excited ion has an additional decay channel to the ground state, i.e., charge recombination followed by charge separation. The rate constants deduced from the analysis of these GSR dynamics are all fully consistent with this hypothesis.  相似文献   

10.
Photoinduced charge-separation and charge-recombination processes of fullerene[60] dyads covalently connected with phenothiazine and its trimer (PTZ n -C 60, n = 1 and 3) with a short amide linkage were investigated. A time-resolved fluorescence study provided evidence of charge separation via the excited singlet state of a C 60 moiety ( (1)C 60*), which displayed high efficiencies in various solvents; Phi (S) CS (quantum yield of charge separation via (1)C 60*) = 0.59 (toluene) to 0.87 (DMF) for PTZ 1-C 60 and 0.78 (toluene) to 0.91 (DMF) for PTZ 3-C 60. The transient absorption measurement with a 6 ns time resolution in the visible and near-IR regions showed evidence of the generation of radical ion pairs in relatively polar solvents for both dyads. In nonpolar toluene, only PTZ 1- (3)C 60* was observed for PTZ 1-C 60, whereas PTZ 3- (3)C 60* as well as the radical ion pair state in equilibrium were observed for PTZ 3-C 60. The radical ion pairs had relatively long lifetimes: 60 (DMF) to 910 ns ( o-dichlorobenzene) for (PTZ) 1 (*+)-C 60 (*-) and 230 (PhCN) to 380 ns ( o-dichlorobenzene) for (PTZ) 3 (*+)-C 60 (*-). The small reorganization energy (lambda) and the electronic coupling element (| V|) were estimated by the temperature dependence of the charge-recombination rates, i.e., lambda = 0.53 eV and | V| = 1.6 cm (-1) for (PTZ) 3 (*+)-C 60 (*-).  相似文献   

11.
Ultrafast excited-state electron transfer has been monitored at the liquid/liquid interface for the first time. Second harmonic generation (SHG) pump/probe measurements monitored the electron transfer (ET) occurring between photoexcited coumarin 314 (C314) acceptor and dimethylaniline (DMA) donor molecules. In the treatment of this problem, translational diffusion of solute molecules can be neglected since the donor DMA is one of the liquid phases of the interface. The dynamics of excited-state C314 at early times are characterized by two components with exponential time constants of 362 +/- 60 fs and 14 +/- 2 ps. The 362 fs decay is attributed to the solvation of the excited-state C314, and the 14 ps to the ET from donor to acceptor. We are able to provide conclusive evidence that the 14 ps component is the ET step by monitoring the formation of the radical DMA cation. The formation time is 16 ps in agreement with the 14 ps decay of C314*. The recombination dynamics of DMA+ plus C314- was determined to be 163 ps from the observation of the DMA+ SHG signal.  相似文献   

12.
The dynamics of exciplex and radical ion formation was studied in donor–acceptor systems with G * et > –0.1 eV. It was shown that the quenching of excited singlet states of aromatic molecules by electron donors in polar solvents led to the formation of radical ions via exciplex dissociation resulting to complete charge separation. Intersystem crossing and internal conversion into the ground state (back electron transfer) compete with this process. The quantum yields and the rate constants of the radical ion formation were measured.  相似文献   

13.
The dynamics of charge separation and charge recombination in synthetic DNA hairpins possessing diphenylacetylene-4,4'-dicarboxamide linkers have been investigated by means of femtosecond time-resolved transient absorption spectroscopy. The lowest excited singlet state of the linker is capable of oxidizing nearest neighbor adenine as well as guanine. A large wavelength shift in the transient absorption spectrum accompanies the conversion of the singlet linker to its anion radical, facilitating the investigation of electron-transfer dynamics. The rate constants for charge separation are dependent upon the oxidation potentials of the neighboring nucleobase donors but not upon the identity of nonnearest neighbors. Thus, the charge separation processes yield a contact radical ion pair in which the positive charge is localized on the neighboring nucleobase. Rate constants for charge recombination are dependent upon the identity of the first and second nearest-neighbor nucleobases but not more remote bases. This dependence is attributed to stabilization of the contact radical ion pair by interaction with its nearest neighbor. The absence of charge migration to form a base-pair separated radical ion pair is a consequence of Coulombic attraction in the contact radical ion pair and the low effective dielectric constant (epsilon < 7) experienced by the contact radical ion pair. Photoinduced charge injection to form a base-pair separated radical ion pair is necessary in order to observe charge migration.  相似文献   

14.
Photoinduced charge separation (CS) and charge recombination (CR) processes have been examined in various porphyrin-fullerene linked systems (i.e., dyads and triads) by means of time-resolved transient absorption spectroscopy and fluorescence lifetime measurements. The investigated compounds comprise a homologous series of rigidly linked, linear donor-acceptor arrays with different donor-acceptor separations and diversified donor strength: freebase porphyrin-C60 dyad (H2P-C60), zincporphyrin-C60 dyad (ZnP-C60), ferrocene-zincporphyrin-C60 triad (Fc-ZnP-C60), ferrocene-freebase porphyrin-C60 triad (Fc-H2P-C60), and zincporphyrin-freebase porphyrin-C60 triad (ZnP-H2P-C60). Most importantly, the lowest lying charge-separated state of all the investigated systems, namely, that of ferrocenium ion (Fc+) and the C60 radical anion (C60.-) pair in the Fc-ZnP-C60 triad, has been generated with the highest quantum yields (close to unity) and reveals a lifetime as long as 16 micros. Determination of CS and CR rate constants, together with the one-electron redox potentials of the donor and acceptor moieties in different solvents, has allowed us to examine the driving force dependence (-DeltaG0ET) of the electron-transfer rate constants (kET). Hereby, the semilogarithmic plots (i.e., log kET versus -DeltaG0ET) lead to the evaluation of the reorganization energy (lambda) and the electronic coupling matrix element (V) in light of the Marcus theory of electron-transfer reactions: lambda = 0.66 eV and V = 3.9 cm(-1) for ZnP-C60 dyad and lambda = 1.09 eV and V = 0.019 cm(-1) for Fc-ZnP-C60, Fc-H2P-C60, and ZnP-H2P-C60 triads. Interestingly, the Marcus plot in Fc-ZnP-C60, Fc-H2P-C60, and ZnP-H2P-C60 has provided clear evidence for intramolecular CR located in both the normal and inverted regions of the Marcus parabola. The coefficient for the distance dependence of V (damping factor: betaCR = 0.58 A(-1) is deduced which depends primarily on the nature of the bridging molecule.  相似文献   

15.
Supramolecular ferrocene-porphyrin-fullerene constructs, in which covalently linked ferrocene-porphyrin-crown ether compounds were self-assembled with alkylammonium cation functionalized fullerenes, have been designed to achieve stepwise electron transfer and hole shift to generate long-lived charge separated states. The adopted crown ether-alkylammonium cation binding strategy resulted in stable conjugates as revealed by computational studies performed by the DFT B3LYP/3-21G(*) method in addition to the binding constants obtained from fluorescence quenching studies. The free-energy changes for charge-separation and charge-recombination were varied by the choice of different metal ions in the porphyrin cavity. Free-energy calculations suggested that the light-induced electron-transfer processes from the singlet excited state of porphyrins to be exothermic in all of the investigated supramolecular dyads and triads. Photoinduced charge-separation and charge-recombination processes have been confirmed by the combination of the time-resolved fluorescence and nanosecond transient absorption spectral measurements. In case of the triads, the charge-recombination processes of the radical anion of the fullerene moiety take place in two steps, viz., a direct charge recombination from the porphyrin cation radical and a slower step involving distant charge recombination from the ferrocene cation moiety. The rates of charge recombination for the second route were found to be an order of magnitude slower than the former route, thus fulfilling the condition for charge migration to generate long-lived charge-separated states in supramolecular systems.  相似文献   

16.
Ferrocene-based derivatization has raised considerable interest in many fields of analytical chemistry. This is due to the well-established chemistry of ferrocenes, which allows rapid and easy access to a large number of reagents and derivatives. Furthermore, the electrochemical properties of ferrocenes are attractive with respect to their detection. This paper summarizes the available reagents, the reaction conditions and the different approaches for detection. While electrochemical detection is still most widely used to detect ferrocene derivatives, e.g., in the field of DNA analysis, the emerging combination of analytical separation methods with electrochemistry, mass spectrometry and atomic spectroscopy allows ferrocenes to be applied more universally and in novel applications where strongly improved selectivity and limits of detection are required.  相似文献   

17.
We have investigated the electronic structures and photophysical properties of 5,10,20,25-tetrakis(pentafluorophenyl)-substituted hexaphyrin(1.1.1.1.1.1) (1) and its meso-keto (2) and meso-diketo derivatives (3) using various spectroscopic measurements. In conjunction with theoretical calculations, these analyses revealed fundamental structure-property relationships within this series, including unusual ground-state electronic structures with neutral, monoradical, and singlet biradical character. The meso-free species 1 is a representative 26 π-electron aromatic compound and shows characteristic spectroscopic features, including a sharp Soret band, well-defined Q-like bands, and a moderately long excited state lifetime (τ = 138 ps). In contrast, the meso-keto derivative 2 displays features characteristic of a neutral monoradical species at the ground state, including the presence of lower energy absorption bands in the NIR spectral region and a relatively short excited-state lifetime (13.9 ps). The meso-diketo 3 exhibits features similar to those of 2, specifically NIR absorptions and a short excited-state lifetime (9.7 ps). Compound 3 is thus assigned as being a ground-state singlet biradicaloid. Two photon absorption (TPA) measurements revealed comparatively large σ(2) values of 600 GM for 2 and 1600 GM for 3 with excitation at λ(ex) =1600 nm as compared to that observed for 1 (σ(2): 360 GM). The enhanced nonlinear optical properties of 2 and 3 are rationalized in terms of the open-shell electronic configuration allowing a large, field-induced fluctuation in the electron density (i.e., a large polarization). This interpretation is supported by theoretical evaluations of the static second hyperpolarizabilities (γ) and γ density analyses. Furthermore, nucleus-independent chemical shift (NICS) and harmonic oscillator model of aromaticity (HOMA) values and anisotropy of the induced current density (AICD) plots revealed a clear distinction in terms of the aromatic character of 1-3. Importantly, the open-shell radicaloid 2 and singlet biradicaloid 3 can be formally regarded as 27 π-electron nonaromatic and 26 π-electron aromatic species, respectively, constrained within a dominant 28 π-electron conjugated network. On the basis of the combined experimental and theoretical evidence, it is concluded that the meso-carbonyl groups of 2 and 3 play an important role in perturbing the macrocyclic π-conjugation of the parent hexaphyrin structure 1. In particular, they lead to the imposition of intrinsic radical and biradical character on the molecule as a whole and thus easy-to-discern modifications of the overall electronic effects.  相似文献   

18.
A novel multimodular donor–acceptor polyad featuring zinc porphyrin, fullerene, ferrocene, and triphenylamine entities was designed, synthesized, and studied as a charge‐stabilizing, photosynthetic‐antenna/reaction‐center mimic. The ferrocene and fullerene entities, covalently linked to the porphyrin ring, were distantly separated to accomplish the charge‐separation/hole‐migration events leading to the creation of a long‐lived charge‐separated state. The geometry and electronic structures of the newly synthesized compound was deduced by B3LYP/3‐21G(*) optimization, while the energy levels for different photochemical events was established using data from the optical absorption and emission, and electrochemical studies. Excitation of the triphenylamine entities revealed singlet‐singlet energy transfer to the appended zinc porphyrin. As predicted from the energy levels, photoinduced electron transfer from both the singlet and triplet excited states of the zinc porphyrin to fullerene followed by subsequent hole migration involving ferrocene was witnessed from the transient absorption studies. The charge‐separated state persisted for about 8.5 μs and was governed by the distance between the final charge‐transfer product, that is, a species involving a ferrocenium cation and a fullerene radical anion, with additional influence from the charge‐stabilizing triphenylamine entities located on the zinc‐porphyrin macrocycle.  相似文献   

19.
The synthesis of the first fully conjugated tetrathiafulvalene–tetracyano‐p‐quinodimethane ((TTF)–TCNQ)‐type system has been carried out by means of a Julia–Kocienski olefination reaction. In particular, a tetracyanoanthraquinodimethane (TCAQ) formyl derivative and two new sulfonylmethyl‐exTTFs (exTTF=2‐[9‐(1,3‐dithiol‐2‐ylidene)anthracen‐10(9H)‐ylidene]‐1,3‐dithiole)—prepared as new building blocks—were linked. A variety of experimental conditions reveal that the use of sodium hexamethyldisilazane (NaHMDS) as base in THF afforded the E olefins with excellent stereoselectivity. Theoretical calculations at the B3LYP/6‐31G** level point to highly distorted exTTF and TCAQ that form an almost planar stilbene unit between them. Although calculations predicted appreciable electronic communication between the donor and the acceptor, cyclic voltammetric studies did not substantiate this effect. It was only in photophysical assays that the electronic communication emerged in the form of a charge‐transfer (CT) absorption and emission. Once photoexcited (i.e., the locally excited state or excited charge‐transfer state), an ultrafast, subpicosecond charge separation leads to a radical ion pair state in which the spectroscopic features of the radical cation of exTTF as well as the radical anion of TCAQ are discernable. The radical ion pair is metastable and undergoes a fast ((1.0±0.2) ps) charge recombination to reconstitute the electronic ground state. Such ultrafast charge separation and recombination processes come as a consequence of the very short vinyl linkage between the two electroactive units.  相似文献   

20.
A new series of donor–bridge–acceptor (D–B–A) compounds consisting of π‐conjugated oligofluorene (oFL) bridges between a ferrocene (Fc) electron‐donor and a fullerene (C60) electron‐acceptor have been synthesized. In addition to varying the length of the bridge (i.e., mono‐ and bi‐fluorene derivatives), four different ways of linking ferrocene to the bridge have been examined. The Fc moiety is linked to oFL: 1) directly without any spacer, 2) by an ethynyl linkage, 3) by a vinylene linkage, and 4) by a p‐phenylene unit. The electronic interactions between the electroactive species have been characterized by cyclic voltammetry, absorption, fluorescence, and transient absorption spectroscopy in combination with quantum chemical calculations. The calculations reveal exceptionally close energy‐matching between the Fc and the oFL units, which results in strong electronic‐coupling. Hence, intramolecular charge‐transfer may easily occur upon exciting either the oFLs or Fcs. Photoexcitation of Fc–oFL–C60 conjugates results in transient radical‐ion‐pair states. The mode of linkage of the Fc and FL bridge has a profound effect on the photophysical properties. Whereas intramolecular charge‐separation is found to occur rather independently of the distance, the linker between Fc and oFL acts (at least in oFL) as a bottleneck and significantly impacts the intramolecular charge‐separation rates, resulting in beta values between βCS 0.08 and 0.19 Å?1. In contrast, charge recombination depends strongly on the electron‐donor–acceptor distance, but not at all on the linker. A value of βCR (0.35±0.01 Å?1) was found for all the systems studied. Oligofluorenes prove, therefore, to be excellent bridges for probing how small structural variations affect charge transport in D–B–A systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号