共查询到20条相似文献,搜索用时 0 毫秒
1.
Optical absorption and emission spectra are reported for single crystals of the cubic elpasolite Cs2NaSmCl6. The variable temperature spectra obtained at high resolution are assigned using energies and relative intensities. Transitions from the ground level, 6H to cystal fi levels of 6H-, 6F-, 4G-, 4F,, 4I, and 6P, are located and characterized. Intensity calculations are reported for magnetic dipole allowed transitions. The dominance of vibronic intensity in 6H→6F - and 6P, transitions is accounted for qualitatively through the ligand polarization model involving quadrupole metal (Sm3+)-ligand (Cl?) interaction mechanisms. The Eu″(6H)→E′(6H) Eu′(6F) no-phonon transition is postulated to be pure electric quadrupole allowed. The ground state magnetic moment is determined to be very small from magnetic circular dichroism (MCD) spectra.This study has led to the assignment of nearly all of the crystal field levels in the visible and IR region for Cs2NaSmCl6. A total of 27 such levels were identified, 17 from no-phonon transitions and the rest from vibronic transitions. The magnetic dipole intensity calculated using intermediate coupling Oh wavefunctions along with a crystal field analysis of the splitting pattern was used in the assignment of the levels. Vibronic bands were observed for all transitions and their vibrational symmetries were tentatively assigned. MCD data were used to determine the magnet moment of the ground state. 相似文献
2.
Larry C. Thompson O.A. Serra James P. Riehl Frederick S. Richardson Robert W. Schwartz 《Chemical physics》1977,26(3):393-401
The emission spectra of microcrystalline Cs2NaTbCl6 and Cs2Na(Y0.99Tb0.01)Cl6 have been measured at room temperature and at 77 K. The crystal structures of these compounds are face-centered cubic and the terbium (III) ions lie at sites of octahedral (Oh) symmetry surrounded by six chloride ions. Emission is observed from both the 5D3 and 5D4 excited states of Tb3+. Assignments have been made for nearly all of the magnetic-dipole transitions split out of the Tb3+7F6, 7F5, 7F4, 7F3, 7F2, 7F1 ← 5D4 and 7F4, 7F2 ← 5D3 transitions. These assignments are based on the calculated transition energies and relative magnetic-dipole strengths and intensities obtained from a weak-field crystal-field analysis of octahedral TbCl63? units. Magnetic-dipole lines dominate the spectra for transitions of ΔJ = ±1 free-ion parentage, whereas both magnetic-dipole lines and vibronically induced electric-dipole lines contribute significantly to the emission intensities of the ΔJ = 0, ±2 transitions. The crystal-field sub-levels of both 5D3 and 5D4 appear to reach a Boltzmann thermal equilibrium prior to emission. Emission from 5D3 is partially quenched in going from low temperature to high temperature and in going from Cs2NaYCl6: Tb3+ (1%) to Cs2NaTbCl6.This study has led to the identification and assignment of nearly all of the pure magnetic-dipole transitions split out of the Tb3+7F6, 7F5, 7F4, 7F3, 7F2, 7F1 ← 5D4 and 7F4, 7F2 ← 5D3 transitions in crystal-line Cs2NaTbCl6. The assignments were based on calculated transition energies and relative magnetic-dipole strengths (and intensities) obtained from a (weak-field) crystal-field analysis of octahedral (Oh) TbCl63? clusters. Excellent agreement between the calculated and observed relative intensities of the magnetic-dipole lines was achieved by assuming a Boltzmann equilibrated set of crystal-field sub-levels for both the 5D4 and 5D3 emitting states. Furthermore, the experimental results suggest that 5D4 ← 5D3 relaxation is temperature-dependent.The energy levels calculated and displayed in table 1 appear to be qualitatively correct and are in semiquantitative agreement with the emission results (as interpreted in section 4). Calculated and observed transition energies for the assigned magnetic-dipole transitions generally agree to within 0.2%.One of the most remarkable features of the emission spectra obtained on Cs2NaTbCl6 is the absence of any vibrational structure in the ΔJ = ± 1 transitions (7F6, 7F3 ← 5D4 and 7F4, 7F2 ← 5D3), and the presence of extensive vibrational structure in the ΔJ = O, ±2 transitions (7F6, 7F4, 7F2 ← 5D4). If other than OO vibronic transitions do contribute to the ΔJ = ±1 emissions, their intensities must be at least two or three orders-of-magnitude weaker than the OO magnetic-dipole lines. Vibronically induced electric-dipole transitions appear, however, to make substantial contributions to the 7F6, 7F4, 7F2 ← 5D4 emission spectra. A clear-cut theoretical explanation for the absence of vibrational structure in the ΔJ = ±1 transitions is not readily apparent. We are presently examining this problem in greater detail. 相似文献
3.
The crystal growth of Cs2NaYCl6 doped with Bi3+ is described and its luminescence properties reported and discussed. 相似文献
4.
The luminescence properties of Cs3Bi2Cl9, α-Cs3Sb2Cl9, and β-Cs3Sb2Cl9 are reported and compared with those of Cs3Bi2Br9. The first two compounds have comparable luminescence properties which can be described in terms of a band model. Deep center emission is observed for both compounds, whereas edge emission is observed only for Cs3Bi2Cl9. The optical transitions of β-Cs3Sb2Cl9 are localized on the Sb3+ ion. The orientation of the lone-pair orbitals of the ns2 ions seems to play an important role in the formation of the cationic valence band. The α-β transformation must therefore have a considerable influence on the spectral properties of Cs3Sb2Cl9. 相似文献
5.
A solid solution with a Cs2?xK1+xBiCl6 (0 ≤ x ≤ 1) formulation and an elpasolite-related structure was prepared. At room temperature the symmetry is cubic (Fm3m) for x = 0 and triclinic for x ≠ 0. For 0 ≤ x ≤ 1, various techniques enabled us to detect a phase transition of the ferroelastic-paraelastic type at tc (°C) temperature. The tc and ΔHtc values are correlated to the size of the alkali ions. 相似文献
6.
Fu Qiang Huang 《Journal of solid state chemistry》2003,174(2):334-341
Three new compounds, Cs2Bi2ZnS5, Cs2Bi2CdS5, and Cs2Bi2MnS5, have been synthesized from the respective elements and a reactive flux Cs2S3 at 973 K. The compounds are isostructural and crystallize in a new structure type in space group Pnma of the orthorhombic system with four formula units in cells of dimensions at 153 K of a=15.763(3), b=4.0965(9), c=18.197(4) Å, V=1175.0(4) Å3 for Cs2Bi2ZnS5; a=15.817(2), b=4.1782(6), c=18.473(3) Å, V=1220.8(3) Å3 for Cs2Bi2CdS5; and a=15.830(2), b=4.1515(5), c=18.372(2) Å, V=1207.4(2) Å3 for Cs2Bi2MnS5. The structure is composed of two-dimensional ∞2[Bi2MS52−] (M=Zn, Cd, Mn) layers that stack perpendicular to the [100] axis and are separated by Cs+ cations. The layers consist of edge-sharing ∞1[Bi2S66−] and ∞1[MS34−] chains built from BiS6 octahedral and MS4 tetrahedral units. Two crystallographically unique Cs atoms are coordinated to S atoms in octahedral and monocapped trigonal prismatic environments. The structure of Cs2Bi2MS5, is related to that of Na2ZrCu2S4 and those of the AMM′Q3 materials (A=alkali metal, M=rare-earth or Group 4 element, M′= Group 11 or 12 element, Q=chalcogen). First-principles theoretical calculations indicate that Cs2Bi2ZnS5 and Cs2Bi2CdS5 are semiconductors with indirect band gaps of 1.85 and 1.75 eV, respectively. The experimental band gap for Cs2Bi2CdS5 is ≈1.7 eV, as derived from its optical absorption spectrum. 相似文献
7.
Fluorescence induced by several exciting lines from an argon-ion laser has been recorded by high-resolution Fourier-transform spectrometry in the 4000- 相似文献
8.
采用固相球磨法制备了K+掺杂双钙钛矿Cs2AgInCl6纳米材料,该方法无需配体辅助,绿色环保。通过X射线衍射谱和拉曼光谱对晶体结构进行研究,通过激发光谱、发射光谱和时间分辨光谱对其发光性能进行研究。结果表明,Cs2AgInCl6为立方晶体,属于Fm3m空间群,由于宇称禁戒跃迁,其荧光量子产率(PLQY)低,小于0.1%。低于60%的K+掺杂主要取代Ag+的位置,引起Cs2AgInCl6的晶格膨胀,消除了晶格结构的反演对称性,打破了宇称禁戒跃迁,掺杂后Cs2AgInCl6的光致发光强度显著增强。K+的最佳掺杂比例为40%,Cs2Ag0.6K0.4InCl6发出中心波长为640 nm,半高宽为180 nm,平均荧光寿命达到29.2 ns,PLQY达到10.5%。当K+掺杂比例超过60%,K+开始取代Cs+的位置,产物发生相变,出现立方相的Cs2-xK1+x-yAgyInCl6和单斜相的Cs2-xK1+xInCl6产物,这些产物由于强电子-声子耦合,非辐射复合占据主导地位。 相似文献
9.
Tao Luo Yalan Zhang Xiaoming Chang Junjie Fang Tianqi Niu Jing Lu Yuanyuan Fan Zicheng Ding Kui Zhao Shengzhong 《Journal of Energy Chemistry》2021,(2):372-378,I0013
The emerging lead-free halide double perovskite solar cells have attracted widespread attentions due to their long-term stability and non-toxicity, but suffer from the low device performance. One efficiencylimiting factor is the improper contacts between the halide double perovskite and anode/cathode electrodes. Here, we improve the efficiency and stability of the bismuth-halide double perovskite based solar cells by a synergistic interface design for both electron and hole transport layers(ETL/HTL). The results show that the modification of the TiO_2 ETL with a thin hydrophobic C60 layer and replacement of the lithium-doped small molecule HTL with an un-doped conjugated polymer lead to higher surface quality of perovskite film and better energy-level alignment at the contacts. As a result, the optimized device shows reduced trap density, suppressed charge recombination and enhanced charge extraction, leading to an increase of 69% in device efficiency. In addition, the device also exhibits superior stability in ambient environment, heat stress and light bias after interface optimization. This work provides an efficient strategy for the device optimization of the emerging lead-free perovskite solar cells. 相似文献
10.
Yu.V. Yablokov M.M. Zaripov A.M. Zoatdinov R.L. Davidovich 《Chemical physics letters》1977,48(3):443-446
In ZnGeF6·6H2O crystal (containing Mn(II) in the ratio of Zn(II) to Mn(II) 100:1 and 10:1) a phase transition connected with the occupation of two inequivalent octahedra complexes GeF2?6 positions was discovered and studied by means of ESR. The phase transition has a hysteresis nature. Transition temperature ranges depend on the concentration of the added ion. The origins of these phenomena are discussed. 相似文献
11.
Crystal field parameter for cubic Cs2NaEuxY1?xCl6 (with x = 0.01) are reported. The values are A04 = 225 cm?1 and A06 = 15 cm?1. 相似文献
12.
G. D. Tsyrenova S. F. Solodovnikov N. N. Pavlova Z. A. Solodovnikova 《Russian Journal of Inorganic Chemistry》2010,55(5):771-779
Subsolidus phase relations in the Cs2MoO4-MMoO4-Zr(MoO4)2 (M = Mn, Zn) ternary systems were determined, and two groups of new isostructural triple molybdates were synthesized: Cs2MZr(MoO4)4 and Cs2MZr2(MoO4)6 (M = Mn, Mg, Co, Zn). Cs2MnZr2(MoO4)6 and Cs2MnZr(MoO4)4 crystals were grown by spontaneous flux crystallization and used in structure solution for both groups of compounds. The
Cs2MnZr2(MoO4)6 structure (a =13.4322(2) ?, c = 12.2016(3) ?, group R3, Z = 3, R = 0.0367) is a new structure type characterized by a mixed three-dimensional framework built of corner-sharing MoO4 tetrahedra and (M, Zr)O6 octahedra where large channels are occupied by cesium cations. Cs2MnZr2(MoO4)4 (a =5.3890(1) ?, c = 8.0685(3) ?, space group P
$
\bar 3
$
\bar 3
m1, Z = 0.5, R = 0.0247) has the layered glaserite-like KAl(MoO4)2 type structure, where Al3+ octahedral positions are randomly occupied by a 0.5M2+ + 0.5Zr4+ mixture. 相似文献
13.
MCD measurements have been used to estimate the ground- and excited-state magnetic moments and zero-field splittings for the 4A2 → 2E(2D) transition in Cs3CoCl5. 相似文献
14.
采用固相球磨法制备了K+掺杂双钙钛矿Cs2AgInCl6纳米材料,该方法无需配体辅助,绿色环保。通过X射线衍射和拉曼光谱对晶体结构进行研究,通过激发光谱、发射光谱和时间分辨光谱对其发光性能进行研究。结果表明,Cs2AgInCl6为立方晶体,属于Fm3m空间群,由于宇称禁戒跃迁,其荧光量子产率(PLQY)低,小于0.1%。低于60%的K+掺杂主要取代Ag+的位置,引起Cs2AgInCl6的晶格膨胀,消除了晶格结构的反演对称性,打破了宇称禁戒跃迁,掺杂后Cs2AgInCl6的光致发光强度显著增强。K+的最佳掺杂比例为40%,Cs2Ag0.6K0.4InCl6材料发射中心波长为640 nm,半高宽为180 nm,平均荧光寿命达到29.2 ns,PLQY达到10.5%。当K+掺杂比例超过60%,K+开始取代Cs+的位置,产物发生相变,出现立方相的Cs2-xK1+x-yAgyInCl6和单斜相的Cs2-xK1+xInCl6产物,这些产物由于强电子-声子耦合,非辐射复合占据主导地位。 相似文献
15.
Crystalline Cs2KMnF6, when prepared below 500°C, adopts a tetragonal elpasolite structure type. Differential scanning calorimetric investigations indicated that Cs2KMnF6 undergoes a phase transition from the low-temperature tetragonal phase (LT) to a high-temperature phase (HT) at about 530°C. Single crystals of the new HT phase could be obtained by annealing a crystalline LT specimen at 600°C followed by rapid quenching to room temperature. In the present study the structures of both phases have been studied by single-crystal X-ray diffraction techniques. The LT phase has the tetragonal space group symmetry I4/mmm, with unit-cell parameters a=6.319(1) (a·
=8.936) and c=9.257(2) Å, and Z=2. The HT phase has the cubic symmetry Fm3m, with the cell parameter a=9.067 Å and Z=4. Structural models of the LT and HT phases have been refined vs collected single-crystal X-ray reflection data to R values of 0.034 and 0.022, respectively. The uneven Mn–F bond distance distribution in the LT form, four bonds of 1.860(6) two of 2.034(9) Å, are typical for an octahedrally coordinated high-spin Mn3+ ion affected by Jahn–Teller effects. Due to symmetry constraints, all six octahedral Mn–F bonds in the HT form are equal to 1.931(5) Å. However, the mean square atomic displacement parameters of the fluorine atoms increases significantly from about 0.022 Å2 for the LT phase to 0.042 Å2 for the HT phase. The increased displacement parameters indicate that the phase transition from the LT to the HT form is associated with a directional disorder of the Jahn–Teller distortions around the Mn3+ ions. 相似文献
16.
Lawrence L. Lohr 《Chemical physics letters》1978,56(1):28-30
A proposal for a possible transition state for the H2 + D2 exchange reaction follows from an analysis of the Jahn-Teller instability of tetrahedral H4. The suggested pathway involves pseudo-rotation in the e deformation space, with a compressed tetrahedral structure corresponding to the reaction saddle point. 相似文献
17.
The synthesis and the crystal structure of Cs2Nb6Br5F12 containing octahedral niobium clusters are presented in this work. This bromofluoride is based on a Nb6Li12Fa6 (L=Br and F) unit and crystallizes in the orthorhombic system (space group, Cccm; Z=4; a=9.2446(2) Å, b=13.6256(3) Å, and c=17.1665(4) Å; R=0.0241). Fluorine and bromine are randomly distributed on the inner ligand positions, Li, that edge-bridge the Nb6 cluster whereas fluorine fully occupies the apical positions (La). The units are linked to each other by apical ligands leading to an original one-dimensional unit connection. The cesium atoms are statistically distributed on several sites that describe parallel channels along the [1 0 0] direction. The influence of fluorine ligands upon the stabilization of this structure type as well as the structural relationships with Ba2Zr6Cl17(B), Nb6F15, and NaMo6Cl13 will be evidenced and discussed. 相似文献
18.
T.A. Keiderling P.J. Stephens S.B. Piepho J.L. Slater P.N. Schatz 《Chemical physics》1975,11(3):343-348
The E″g(2T2g) å U′g(2T2g) transition of Ir4+ in Cs2ZrCl6 is observed in the infrared energy range 5000–6000 cm?1 by absorption and magnetic circular dichroism spectroscopy. The resolved vibrational structure provides detailed information about the change in vibrational frequencies on excitation and the transition intensity mechanism. The energy of the transition requires the Ir4+ spin-orbit coupling parameter ζ to be ≈ 2800 cm?1. 相似文献
19.
David Hamani Olivier Masson Maggy Colas Philippe Thomas 《Journal of solid state chemistry》2011,184(3):637-8501
The Raman and IR-absorption spectra of the Cs2Te4O12 lattice are first recorded and interpreted. Extraordinary features observed in the structure and Raman spectra of Cs2Te4O12 are analyzed by using ab initio and lattice-dynamical model calculations. This compound is specified as a caesium-tellurium tellurate Cs2TeIV(TeVIO4)3 in which TeIV atoms transfer their 5p electrons to [TeVIO4]36− tellurate anions, thus fulfilling (jointly with Cs atoms) the role of cations. The TeVI-O-TeVI bridge vibration Raman intensity is found abnormally weak, which is reproduced by model treatment including the Cs+ ion polarizability properties in consideration. 相似文献
20.
Crystals of a second, “green” modification of Cs2[VOF4(H2O)] were obtained from aqueous solution. Their crystal structure was studied on the basis of three-dimensional X-ray data. The structure is orthorhombic, a = 8.231(3), b = 10.323(3), c = 8.497(3) Å, V = 722.0Å3, Z = 4, space group Ccmm. The final R and RW were 0.035 and 0.048, respectively, for 421 independent reflections. As the already known “blue” modification, the present structure contains isolated, highly deformed octahedral [VOF4(H2O)]2? ions with the oxygen atoms in trans positions. The cesium sublattice and the orientation of the anions to each other are completely different in both modifications. uv/VIS reflection, and ir and Raman spectra of both modifications are discussed. 相似文献