首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 863 毫秒
1.
The gas-phase acidity of R--XH (R=H, CH(3), CH(2)CH(3), CH==CH(2), C[triple chemical bond]CH; X=Be, Mg, Ca) alkaline-earth-metal derivatives has been investigated through the use of high-level CCSD(T) calculations by using a 6-311+G(3df,2p) basis set. BeH(2) is a stronger acid than BH(3) and CH(4) for two concomitant reasons: 1) the dissociation energy of the Be--H bond is smaller than the dissociation energies of the B--H and C--H bonds, and 2) the electron affinity of BeH(.) is larger in absolute value than those of BH(2) (.) and CH(3) (.). The acidity also increases on going from BeH(2) to MgH(2) due to these two same factors. Quite importantly, despite the fact that the X--H bonds in the R--XH (X=Mg, Ca) derivatives exhibit the expected X(delta+)--H(delta-) polarity, they behave as metal acids in the gas phase and only Be derivatives behave as carbon acids in the gas phase. The ethylberyllium hydride exhibits an unexpected high acidity compared with the methyl derivative because deprotonation of the system is accompanied by a cyclization that stabilizes the anion. Similarly to that found for derivatives that contain heteroatoms from groups 14, 15, and 16, the unsaturated compounds are stronger acids than the saturated counterparts, with the only exception of the Ca-vinyl derivative. Most importantly, among ethyl, vinyl, and ethynyl derivatives containing a heteroatom of the main group of the Periodic Table, those containing Be, Mg, and Ca are among the strongest gas-phase acids.  相似文献   

2.
This work extends our earlier quantum chemical studies on the gas-phase basicity of very strong N-bases to two series of nitriles containing the methylenecyclopropene and cyclopropenimine scaffolds with dissymmetrical substitution by one or two electron-donating substituents such as Me, NR2, N=C (NR2)2, and N=P (NR2)3, the last three being strong donors. For a proper prediction of their gas-phase base properties, all potential isomeric phenomena and reasonable potential protonation sites are considered to avoid possible inconsistencies when evaluating the energetic parameters and associated protonation or deprotonation equilibria B + H+ = BH+. More than 250 new isomeric structures for neutral and protonated forms are analyzed. The stable structures are selected and the favored ones identified. The microscopic (kinetic) gas-phase basicity parameters (PA and GB) corresponding to N sites (cyano and imino in the cyclopropenimine or in the substituents) in each isomer are calculated. The macroscopic (thermodynamic) PAs and GBs, referring to the isomeric mixtures of favored isomers, are also estimated. The total (pushing) substituent effects are analyzed for monosubstituted and disubstituted derivatives containing two identical or two different substituents. Electron delocalization is examined in the two π–π conjugated transmitters, the methylenecyclopropene and cyclopropenimine scaffolds. The aromatic character of the three-membered ring is also discussed.  相似文献   

3.
[reaction: see text] The adiabatic electron affinity (EA(ad)) of the CH(3)-C[triple bond]C(*) radical [experiment = 2.718 +/- 0.008 eV] and the gas-phase basicity of the CH(3)-C[triple bond]C:(-) anion [experiment = 373.4 +/- 2 kcal/mol] have been compared with those of their fluorine derivatives. The latter are studied using theoretical methods. It is found that there are large effects on the electron affinities and gas-phase basicities as the H atoms of the alpha-CH(3) group in the propynyl system are substituted by F atoms. The predicted electron affinities are 3.31 eV (FCH(2)-C[triple bond]C(*)), 3.86 eV (F(2)CH-C[triple bond]C(*)), and 4.24 eV (F(3)C-C[triple bond]C(*)), and the predicted gas-phase basicities of the fluorocarbanion derivatives are 366.4 kcal/mol (FCH(2)-C[triple bond]C:(-)), 356.6 kcal/mol (F(2)CH-C[triple bond]C:(-)), and 349.8 kcal/mol (F(3)C-C[triple bond]C:(-)). It is concluded that the electron affinities of fluoropropynyl radicals increase and the gas-phase basicities decrease as F atoms sequentially replace H atoms of the alpha-CH(3) in the propynyl system. The propargyl radicals, lower in energy than the isomeric propynyl radicals, are also examined and their electron affinities are predicted to be 0.98 eV ((*)CH(2)-C[triple bond]CH), 1.18 eV ((*)CFH-C[triple bond]CH), 1.32 eV ((*)CF(2)-C[triple bond] CH), 1.71 eV ((*)CH(2)-C[triple bond]CF), 2.05 eV ((*)CFH-C[triple bond]CF), and 2.23 eV ((*)CF(2)-C[triple bond]CF).  相似文献   

4.
The gas-phase acidity of ethyl-, vinyl-, ethynyl-, and phenyl-substituted silanes, germanes, and stannanes has been measured by means of FT-ICR techniques. The effect of unsaturation on the intrinsic acidity of these compounds and the corresponding hydrocarbons was analyzed through the use of G2 ab initio and DFT calculations. In this way, it was possible to get a general picture of the acidity trends within group 14. As expected, the acid strength increases down the group, although the acidity differences between germanium and tin derivatives are already rather small. As has been found before for amines, phosphines, and arsines, the carbon, silicon, germanium, and tin alpha,beta-unsaturated compounds are stronger acids( )than their saturated analogues. The acidifying effect of unsaturation is much larger for carbon than for Si-, Ge-, and Sn-containing compounds. The allyl anion is better stabilized by resonance than its Si, Ge, and Sn analogues, [CH(2)(-)(delta)--CH(+)(delta)(') --CH(2)(-)(delta)](-) vs [CH(2)(-)(delta)()II = CH(-)(delta)()III - XH(2)(-)(delta)()IV](-) (X = Si, Ge, Sn). The enhanced acid strength of unsaturated compounds is essentially due to a greater stabilization of the anion with respect to the neutral, because the electronegativity of the alpha,beta-unsaturated carbon group increases with its degree of unsaturation. The phenyl derivatives are systematically weaker acids than the corresponding ethynyl derivatives by 15-20 kJ mol(-)(1). Experimentally, toluene acidity is very close to that of propyne, because the deprotonation of propyne takes place preferentially at the =CH group rather than at the -CH(3) group.  相似文献   

5.
The gas-phase acidities of methylidynephosphine, HCtbond;P, ethylidynephosphine, CH(3)Ctbond;P, and ethylidynearsine, CH(3)Ctbond;As, have been measured by means of Fourier Transform Ion Cyclotron Resonance (FTICR) mass spectrometry and calculated at the CCSD(T)/6-311+G(3df,2p)//QCISD/ 6-311+G(df,p) level of theory. An analysis of these results shows that, in contrast to the well-known fact that HCtbond;N is a stronger acid than CH(3)Ctbond;N, CH(3)Ctbond;P and CH(3)Ctbond;As are more acidic than HCtbond;P and HCtbond;As, respectively. The most important consequence of this unexpected effect is that while HCtbond;P and HCtbond;As are found to be weaker acids than HCtbond;N, the opposite trend is found for the corresponding methyl derivatives, the acidity of which increases as CH(3)Ctbond;N相似文献   

6.
A kinetic study of the reversible deprotonation of substituted (methylthiophenylcarbene)pentacarbonyltungsten(0) ((CO)(5)W=C(SC(6)H(4)Z)CH(3)) and of substituted (benzoxymethylcarbene)pentacarbonyltungsten(0) ((CO)(5)W=C(OCH(2)C(6)H(4)Z)CH(3)) by primary aliphatic and secondary alicyclic amines in 50% MeCN-50% water (v/v) at 25 degrees C is reported. From the dependence of the deprotonation rate constants on amine basicity and on carbene complex acidity (variation of Z), Br?nsted beta(B) and alpha(CH) values, respectively, were obtained. The alpha(CH) values were found to be smaller than the beta(B) values. These results indicate a transition state imbalance in which the loss of the carbene complex stabilizing pi-donor effect of the OCH(2)Ar and SAr groups lags behind the proton transfer. These findings confirm a previously formulated hypothesis as to how pi-donor groups attached to the carbene carbon of carbene complexes can affect transition state imbalances and mask the experimental manifestation of such imbalances. It is also shown that the transition state structure of the reactions examined in this work is subject to changes with changing amine basicity and carbene complex acidity; these changes can be expressed by p(xy)() cross correlation coefficients, which are positive.  相似文献   

7.
Methyl, methyl-d(3), and ethyl hydroperoxide anions (CH(3)OO(-), CD(3)OO(-), and CH(3)CH(2)OO(-)) have been prepared by deprotonation of their respective hydroperoxides in a stream of helium buffer gas. Photodetachment with 364 nm (3.408 eV) radiation was used to measure the adiabatic electron affinities: EA[CH(3)OO, X(2)A' '] = 1.161 +/- 0.005 eV, EA[CD(3)OO, X(2)A' '] = 1.154 +/- 0.004 eV, and EA[CH(3)CH(2)OO, X(2)A' '] = 1.186 +/- 0.004 eV. The photoelectron spectra yield values for the term energies: Delta E(X(2)A' '-A (2)A')[CH(3)OO] = 0.914 +/- 0.005 eV, Delta E(X(2)A' '-A (2)A')[CD(3)OO] = 0.913 +/- 0.004 eV, and Delta E(X(2)A' '-A (2)A')[CH(3)CH(2)OO] = 0.938 +/- 0.004 eV. A localized RO-O stretching mode was observed near 1100 cm(-1) for the ground state of all three radicals, and low-frequency R-O-O bending modes are also reported. Proton-transfer kinetics of the hydroperoxides have been measured in a tandem flowing afterglow-selected ion flow tube (FA-SIFT) to determine the gas-phase acidity of the parent hydroperoxides: Delta(acid)G(298)(CH(3)OOH) = 367.6 +/- 0.7 kcal mol(-1), Delta(acid)G(298)(CD(3)OOH) = 367.9 +/- 0.9 kcal mol(-1), and Delta(acid)G(298)(CH(3)CH(2)OOH) = 363.9 +/- 2.0 kcal mol(-1). From these acidities we have derived the enthalpies of deprotonation: Delta(acid)H(298)(CH(3)OOH) = 374.6 +/- 1.0 kcal mol(-1), Delta(acid)H(298)(CD(3)OOH) = 374.9 +/- 1.1 kcal mol(-1), and Delta(acid)H(298)(CH(3)CH(2)OOH) = 371.0 +/- 2.2 kcal mol(-1). Use of the negative-ion acidity/EA cycle provides the ROO-H bond enthalpies: DH(298)(CH(3)OO-H) = 87.8 +/- 1.0 kcal mol(-1), DH(298)(CD(3)OO-H) = 87.9 +/- 1.1 kcal mol(-1), and DH(298)(CH(3)CH(2)OO-H) = 84.8 +/- 2.2 kcal mol(-1). We review the thermochemistry of the peroxyl radicals, CH(3)OO and CH(3)CH(2)OO. Using experimental bond enthalpies, DH(298)(ROO-H), and CBS/APNO ab initio electronic structure calculations for the energies of the corresponding hydroperoxides, we derive the heats of formation of the peroxyl radicals. The "electron affinity/acidity/CBS" cycle yields Delta(f)H(298)[CH(3)OO] = 4.8 +/- 1.2 kcal mol(-1) and Delta(f)H(298)[CH(3)CH(2)OO] = -6.8 +/- 2.3 kcal mol(-1).  相似文献   

8.
The apparent gas-phase basicities (GB(app)'s) of basic sites in multiply protonated molecules, such as proteins, can be approximately predicted. An approach used by Williams and co-workers was to develop an equation for a diprotonated system, NH(3)(CH(2))(7)NH(3)(2+), and then extend it with a summation of pairwise interactions to multiply protonated systems. Experimental determinations of the rates of deprotonation of NH(3)(CH(2))(7)NH(3)(2+) by a variety of bases B, in the present work, showed that GB(app) = GB(NH(3)) = 196 kcal/mol. This result is supported also by determinations of the equilibria: NH(3)(CH(2))(p)NH(3)(2+) + NH(3) = NH(3)(CH(2))(p)NH(3) x NH(3)(2+), for p = 7, 8, 10, 12. The described experimental GB(app) is 14 kcal/mol higher than the value predicted by the equation used by Williams and co-workers but in agreement with an ab initio result by Gronert. Equations based on electrostatics are developed for the two proton and multiproton systems which allow the evaluation of GB(app) of the basic sites on proteins. These are applied for the evaluation of GB(app) of the basic sites and of N(SB), the maximum number of protons that the nondenatured proteins, carbonic anhydrase (CAII), cytochrome c (CYC), and pepsin, can hold. The N(SB) values are compared with the observed charges, Z(obs)'s, when the nondenatured proteins are produced by electrospray and found in agreement with the proposal by de la Mora that Z(obs) is determined by the number of charges provided by the droplet that contains the protein, according to the charge residue model (CRM). The GB(app) values of proteins have many other applications. They can be compared with experimental measurements and are also needed for the understanding of the thermal denaturing of charged proteins and the thermal dissociation of charged protein complexes.  相似文献   

9.
The gas-phase acidity of CH3-CH2XH (X=S, Se, Te), CH2=CHXH (X=S, Se, Te) and PhXH (X=S, Se) compounds was measured by means of Fourier transform ion cyclotron resonance mass spectrometry. To analyze the role that unsaturation plays on the intrinsic acidity of these systems, a parallel theoretical study, in the framework of the G2 and the G2(MP2) theories, was carried out for all ethyl, ethenyl (vinyl), ethynyl, and phenyl O-, S-, Se-, and Te-containing derivatives. Unsaturated compounds are stronger acids than their saturated analogues, because of the strong pi-electron donor ability of the heteroatoms that contributes to a large stabilization of the unsaturated anions. Ethynyl derivatives are stronger acids than vinyl compounds, while phenyl derivatives have an intrinsic acidity intermediate between that of the corresponding vinyl and ethynyl analogues. The CH2=CHXH vinyl compounds (enol-like) behave systematically as slightly stronger acids than their CH3-C(H)X (keto-like) tautomers. Vinyl derivatives are stronger acids than ethyl compounds, because the anion stabilization attributable to unsaturation is greater than that undergone in the neutral compounds. Conversely, the enhanced acidity of the ethynyl derivatives with respect to the vinyl compounds is due to two concomitant effects, the stabilization of the anion and the destabilization of the neutral compound. The acidities of ethyl, vinyl, and ethynyl derivatives containing heteroatoms of Groups 14, 15, and 16 of the periodic table are closely related, and reflect the differences in electronegativity of the CH3CH2-, CH2=CH-, and CH[triple chemical bond]C- groups.  相似文献   

10.
Secondary 5-X-adamant-2-yl cations IX (X = F, Si(CH3)3) have been generated in the gas phase (total pressure = 760 Torr) from protonation-induced defluorination of epimeric 2-F-5-X-adamantanes 1X and their kinetic diastereoselectivity toward CH318OH investigated in the 40-160 degrees C range. The experimental results indicate that the facial selectivity of IX is insensitive to the composition of the starting 1X epimers as well as to the presence and the concentration of a powerful base (N(C2H5)3). This kinetic picture, supported by B3LYP/6-31G* calculations, is consistent with a single stable pyramidalized structure for IX, that is, (Z)-5-F-adamant-2-yl (I(Z)F) and (E)-5-Si(CH3)3-adamant-2-yl cations (I(E)Si). The temperature dependence of the IX diastereoselectivity lends support to the intermediacy of noncovalent adducts [IX*CH318OH], characterized by a specific C2-H+...O18(H)CH3 hydrogen bonding interaction. Their conversion to the covalently bonded O-methylated (Z)- (II(Z)X) and (E)-5-X-adamantan-2-ols (II(E)X; X = F, Si(CH3)3) is governed by activation parameters, whose magnitude depends on the specific IX face accommodating CH318OH. The gas-phase diastereoselectivity of IX toward CH318OH is compared to that exhibited in related gas-phase and solution processes. The emerging picture indicates that the factors determining the diastereoselectivity of IX toward simple nucleophiles in the gaseous and condensed media are completely different.  相似文献   

11.
胺丶醇丶醚类化合物气相碱性的CNDO/2计算   总被引:1,自引:0,他引:1  
The gas-phase basicities of compounds can be measured by their proton affinities. In this paper we he calculated the gas-phase basicities of about seventy compounds containing N or O by means of the method CNDO/2. For the alkylamines, alcohols, ethers and carbonyl compounds, computational results agree qualitatively with the experimental values. The sequences of gas-phase basicities for the series of these compounds are as follows: Et2NH>Me3N>t-BuNH2>Me2NH>i-PrNH2>n-BuNH2>n-PrNH2>EtNH2>MeNH2>NH3; Et2O>EtOMe>t-BuOH>Me2O>i-PrOH>n-BuOH>n-PrOH>EtOH>MeOH>H2O; n-PrCHO>EtCHO>MeCHO>HCHO; n-BuCO2H>n-PrCO2H>EtCO2H>MeCO2H>HCO2H; HCO2Bu-n>HCO2Pr-N>HCO2Et>HCO2Me>HCO2H Obviously, alkyl substitution plays a role to increase the gas-phase basicities. The squence of increasing effectiveness is t-Bu>i-Pr>n-Bu>n-Pr>Et>Me For the amines containing heteroatoms investigated here, the gas-phase basicities have the following order repectively: CH3NH2>NH2NH2>NH2OH>NH2F>NHF2>NF3 The gas-phase basicities of these compounds change regularly with various substitutents. For the aliphatic compounds, the gas-phase basicity increases with thosizo and the degree of branching of the alkyl groups. For the amines containing heteroatoms, the gas-phase basicity decreases with increasing of the electro-negativity of the substitutent. For the relationship between the gas-phase basksity and the charge distribution and the ionization potentials, the conclusions are as follows: (1) The gas-phase basicities of the homologous compounds are proportional to the electron density of the atom N or O, but those of Rn NH3-n and Rn OH2-n are inversely proportional to the electron denisty of atom N or O. This shows that the base strength of the molecule cannot be determined solely by the electron density of the individual atom. (2) In the protonation reaction the alkyl groups spread the charges from the charged center. This effect enables protonated cations to become more stable because of the charge distribution av  相似文献   

12.
The annular tautomerism of 1,2,3-triazole and 3(5)-methylpyrazole is discussed by means of a combination of theoretical calculations and experimental (ICR) gas-phase basicities and acidities. In the gas phase 1,2,3-triazole exists as the 2H-tautomer, whereas both tautomers of 3(5)-methylpyrazole are of similar energy. The solvent effects on these prototropic equilibria are discussed taking into account solvent properties as polarity/polarizability, acidity, and basicity. In nonhydrogen bonding solvents, the difference in dipole moments between both tautomers plays a role that has usually been underestimated.  相似文献   

13.
The components of the organic aerosol formed due to gas-phase beta-caryophyllene ozonolysis were characterized by the use of a triple quadrupole and time-of-flight analyzer hybrid system coupled to an electrospray ionization source operated in the negative ion mode. A reversed-phase high-performance liquid chromatography (HPLC) column was used to achieve chromatographic separations at neutral pH which has been proved to induce ionization of organic compounds bearing aldehyde moieties. In addition to the detected oxo- and dicarboxylic acids, isomeric oxidation products, which bear multi-functional groups such as aldehyde, carbonyl and hydroxyl groups, could be differentiated by examining their corresponding collision-induced dissociation (CID) fragmentation pathways. Proposed fragmentation mechanisms were drawn for the experimentally observed fragmentation pathways in all the CID experiments. Cyclic oxidation products could also be discerned and their fragmentation behaviour under low energy collisional conditions was studied in detail. Gas-phase deprotonation potentials were calculated by the use of DFT B3LYP/6-311+G(2d,p)//B3LYP/6-31+G(d) + ZPVE to estimate the most thermodynamically favourable deprotonation site for efficient negative ion formation in the ion source. The optimized gas-phase geometries for the most prominent oxidation products reveal a strong intramolecular interaction between the upper and lower C4 carbon chains, which are formed after the decomposition of the primary ozonide generated by ozone attack of the reactive endocyclic C==C bond.  相似文献   

14.
The intrinsic acidity and basicity of a series of beta-chalcogenovinyl(thio)aldehydes HC([double bond]X)[bond]CH[double bond]CH[bond]CYH (X=O, S; Y=Se, Te) were investigated by B3LYP/6-311+G(3df,2p) density functional and G2(MP2) calculations on geometries optimized at the B3LYP/6-31G(d) level for neutral molecules and at the B3LYP/6-31+G(d) level for anions. The results showed that selenovinylaldehyde and selenovinylthioaldehyde should behave as Se bases in the gas phase, because the most stable neutral conformer is stabilized by an X[bond]H...Se (X=O, S) intramolecular hydrogen bond (IHB). In contrast the Te-containing analogues behave as oxygen or sulfur bases, because the most stable conformer is stabilized by typical X...Y[bond]H chalcogen-chalcogen interactions. These compounds have a lower basicity than expected because either chalcogen-chalcogen interactions or IHBs become weaker upon protonation. Similarly, they are also weaker acids than expected because deprotonation results in a significantly destabilized anion. Loss of the proton from the X[bond]H or Y[bond]H groups is a much more favorable than from the C[bond]H groups. Therefore, for Se compounds the deprotonation process results in loss of the X[bond]H...Se (X=O, S) IHBs present in the most stable neutral conformer, while for Te-containing compounds the stabilizing X...Y[bond]H chalcogen-chalcogen interaction present in the most stable neutral conformer becomes repulsive in the corresponding anion.  相似文献   

15.
We studied the effects of polar groups on the gas-phase acidities of carboxylic acids experimentally and computationally. In this connection, the gas-phase acidities (DeltaH(acid), the enthalpy of deprotonation, and DeltaG(acid), the deprotonation free energy) of borane-complexed methylaminoacetic acid ((CH(3))2N(BH(3))CH(2)CO(2)H) and methylthioacetic acid (CH(3)S(BH(3))CH(2)CO(2)H) were measured using the kinetic method in a flowing afterglow-triple quadrupole mass spectrometer. The values of DeltaH(acid) and DeltaG(acid) of (CH(3))2N(BH(3))CH(2)CO(2)H were determined to be 328.8 +/- 1.9 and 322.1 +/- 1.9 kcal/mol, and those of CH(3)S(BH(3))CH(2)CO(2)H were determined to be 325.8 +/- 1.9 and 319.2 +/- 1.9 kcal/mol, respectively. The theoretical enthalpies of deprotonation of (CH(3))2N(BH(3))CH(2)CO(2)H (329.2 kcal/mol) and CH(3)S(BH(3))CH(2)CO(2)H (325.5 kcal/mol) were calculated at the B3LYP/6-31+G(d) level of theory. The calculated enthalpies of deprotonation of N-oxide-acetic acid (CH(3)NOCH(2)CO(2)H, 329.4 kcal/mol) and S-oxide-acetic acid (CH(3)SOCH(2)CO(2)H, 328.6 kcal/mol) are comparable to the experimental results for borane-complexed methylamino- and methylthioacetic acids. The enthalpy of deprotonation of sulfone-acetic acid (CH(3)SO2CH(2)CO(2)H, 326.1 kcal/mol) is about 2 kcal/mol lower than the S-oxide-acetic acid. The calculated enthalpy of deprotonation of sulfoniumacetic acid, (CH(3))2S+CH(2)CO(2)H, is 243.0 kcal/mol. Compared to the corresponding reference molecules, CH(3)NHCH(2)CO(2)H and CH(3)SCH(2)CO(2)H, the dipolar group and the monopolar group substituted carboxylic acids are stronger acids by 11-14 and 97 kcal/mol, respectively. We correlated the changes of the acidity upon a polar group substitution to the electrostatic free energy within the carboxylate anion. The acidity enhancements in polar group substituted carboxylic acids are the results of the favorable electrostatic interactions between the polar group and the developing charge at the carboxyl group.  相似文献   

16.
A principle for creating a new generation of nonionic superbases is presented. It is based on attachment of tetraalkylguanidino, 1,3-dimethylimidazolidine-2-imino, or bis(tetraalkylguanidino)carbimino groups to the phosphorus atom of the iminophosphorane group using tetramethylguanidine or easily available 1,3-dimethylimidazolidine-2-imine. Seven new nonionic superbasic phosphazene bases, tetramethylguanidino-substituted at the P atom, have been synthesized. Their base strengths are established in tetrahydrofuran (THF) solution by means of spectrophotometric titration and compared with those of eight reference superbases designed specially for this study, P2- and P4-iminophosphoranes. The gas-phase basicities of several guanidino- and N',N',N',N'-tetramethylguanidino (tmg)-substituted phosphazenes and their cyclic analogues are calculated, and the crystal structures of (tmg)3P=N-t-Bu and (tmg)3P=N-t-Bu x HBF4 are determined. The enormous basicity-increasing effect of this principle is experimentally verified for the tetramethylguanidino groups in the THF medium: the basicity increase when moving from (dma)3P=N-t-Bu (pKalpha = 18.9) to (tmg)3P=N-t-Bu (pKalpha = 29.1) is 10 orders of magnitude. A significantly larger basicity increase (up to 20 powers of 10) is expected (based on the high-level density functional theory calculations) to accompany the similar gas-phase transfer between the (dma)3P=NH and (tmg)3P=NH bases. Far stronger basicities still are expected when, in the latter two compounds, all three dimethylamino (or tetramethylguanidino) fragments are replaced by methylated triguanide fragments, (tmg)2C=N-. The gas-phase basicity (around 300-310 kcal/mol) of the resulting base, [(tmg)2C=N-]3P=NH, having only one phosphorus atom, is predicted to exceed the basicity of (dma)3P=NH by more than 40 powers of 10 and to surpass also the basicity of the widely used commercial [(dma)3P=N]3P=N-t-Bu (t-BuP4) superbase.  相似文献   

17.
The negative ion electrospray ionization (ESI) mass spectra of a series of dicarboxylic acids, a pair of isomeric (cis/trans) dicarboxylic acids and two pairs of isomeric (positional) substituted benzoic acids, including a pair of hydroxybenzoic acids, were recorded in the presence of halide ions (F(-), Cl(-), Br(-) and I(-)). The ESI mass spectra contained [M--H](-) and [M+X](-) ions, and formation of these ions is found to be characteristic of both the analyte and the halide ion used. The analytes showed a greater tendency to form adduct ions with Cl(-) under ESI conditions compared with the other halide ions used. The isomeric compounds yielded distinct spectra by which the isomers could be easily distinguished. The collision-induced dissociation mass spectra of [M+X](-) ions reflected the gas-phase basicities of both the halide ion and [M--H](-) ion of the analyte. However, the relative ordering of gas-phase basicities of all analyte [M--H](-) and halide ions could not account for the dominance of chloride ion adducts in ESI mass spectra of the analytes mixed with equimolar quantities of the four halides.  相似文献   

18.
A series of nitro-substituted 3,3'-bis-indolyl phenylmethane derivatives were synthesized and their anion binding properties were investigated in detail. The introduction of the electron-withdrawing nitro group into indole unit and/or meso-phenyl ring, which leads to the increased acidity of indole NH and meso-position CH proton, has a positive effect on anion binding. The nitro-substituted bis(indolyl)methane receptors exhibited selective colorimetric sensing of F- anion, as revealed by the notable color and spectral changes, rationally due to the deprotonation of the indole NH of the receptor. Meanwhile, the additive introduction of the nitro substituents on the meso-phenyl ring of bis(indolyl)methane can lead to the deprotonation of the meso-position CH and further induce an irreversible oxidation process obtaining bis(indolyl)methene product in the F- anion sensing system.  相似文献   

19.
The syntheses of the vinyloxycyclotriphosphazene derivatives N3P3X5OCH=CH2 (X = OMe, OCH2CF3) and the N3P3(NMe2)4(OCH=CH2)2 isomeric mixture along with improved preparations of N3P3X5OCH=CH2 (X = F, NMe2) are reported. The interactions between the vinyloxy function and the cyclophosphazene in these and the previously reported N3P3Cl5 (OCH=CH2) and N3P3F6-n(OCH=CH2)n (n = 1-4) have been examined by ultraviolet photoelectron spectroscopy (UPS) and NMR spectroscopy. The UPS data for the chloro and fluoro derivatives show a strong electron-withdrawing effect of the phosphazene on the olefin that is mediated with decreasing halogen substitution. The 1H and 13C NMR data for N3P3X5OCH=CH2 (X = F, Cl, OMe, OCH2CF3, NMe2) show significant changes as a function of the phosphazene substituent. There is a linear correlation between the beta-carbon chemical shift on the vinyloxy unit and the phosphorus chemical shift at the vinyloxyphosphorus centers. The chemical shifts of the different phosphorus centers on each ring are also related in a linear fashion. These relationships may be understood in terms of the relative electron donor-acceptor abilities of the substituents on the phosphazene ring. The 1H NMR spectra of the N3P3(NMe2)4(OCH-CH2)2 isomeric mixture allow for assignment of the relative amounts of cis and trans isomers. A model for the observed cis preference in the formation of N3P3Cl4(OCH=CH)2 is presented.  相似文献   

20.
A series of stable organosuperbases, N-alkyl- and N-aryl-1,3-dialkyl-4,5-dimethylimidazol-2-ylidene amines, were efficiently synthesized from N,N'-dialkylthioureas and 3-hydroxy-2-butanone and their basicities were measured in acetonitrile. The derivatives with tert-alkyl groups on the imino nitrogen were found to be more basic than the tBuP(1) (pyrr) phosphazene base in acetonitrile. The origin of the high basicity of these compounds is discussed. In acetonitrile and in the gas phase, the basicity of the alkylimino derivatives depends on the size of the substituent at the imino group, which influences the degree of aromatization of the imidazole ring, as measured by (13)C?NMR chemical shifts or by the calculated ΔNICS(1) aromaticity parameters, as well as on solvation effects. If a wider range of imino-substituents, including electron-acceptor substituents, is treated in the analysis then the influence of aromatization is less predominant and the gas-phase basicity becomes more dependent on the field-inductive effect, polarizability, and resonance effects of the substituent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号